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ELECTROMAGNETIC INDUCTION 
6.1 Introduction: We know from the study of electrostatic charges, magnetic fields and magnetism till this 

point, that a magnetic field is associated with the flow of charge (current) and have its peculiar 
properties in the space in which it exists. First of all, the great scientist, Michael Faraday thought that a 
magnetic field must also be associated with an electric current, i.e. an electric current may be produced 
with the help of an external magnetic field. He experimented for a long duration, about 20 years of his 
life, but got failed again and again. One day he threw the whole setup of his experimentation, when 
became totally fed up of the tedious experimentation. The magnet passed from the vicinity of the coil at 
a very high speed and he observed the deflection in the galvanometer, and accidentally he came to know 
that it is not the magnetic field but the continuous change in magnetic field, which will generate the 
electric current. So, he named this branch of physics as Electromagnetic Induction. We will go through 
the generation of electric current with the help of electromagnetic induction in detail in this chapter. 

6.2 Magnetic Flux (ɸ): The total number of magnetic lines of force passing normally through any surface 
(cross-sectional area) is known as magnetic flux passing through that surface. It may be expressed and 
measured as the product of the component of the magnetic field normal to the surface and the surface 
area. The magnetic flux (ɸ) is a scalar quantity and its unit is Weber (Wb). 

 If a uniform magnetic field ( B


) crosses normally through a plane surface of area A, as shown in the   
Fig. 6.1 (a), then the magnetic flux through this surface may be given as: 

  ɸ = B × A    (6.1) 

 If a uniform magnetic field ( B


) makes an angle θ with the 
normal to the surface and crosses this plane surface of area 
A, as shown in the Fig. 6.1 (b), then the magnetic flux 
through this surface may be given as: 

  ɸ = B cos θ × A = B A cos θ = B


. A


    (6.2) 

 In general, the magnetic field ( B


) over a surface area ( A


) may be non uniform. 
However, if we consider a large number of infinitesimally small areas in that 
surface, the non-uniform magnetic field may be approximated as the uniform 
magnetic field over each incremental area ( d A


), as shown in the Fig. 6.2. If angle 

between the magnetic field ( B


) and the normal to the incremental area ( d A


) is θ, 
then the component of B


 along d A


 will be B cos θ. So, the flux through the small 

incremental area ( d A


) may be given as: 

  dɸ = B cos θ × dA = B dA cos θ = B


. d A


    (6.3) 

 Now, flux through the complete surface area A may be given as: 

  ɸ = .
A

B d A


 (6.4) 

 Dimensions of Magnetic Flux: We know that the flux passing through a surface area may be given as: 

  ɸ = B A = 
sin θ
F

q v
 × A 

 So, dimensions of flux, ɸ = 
2

1. .1
M LT

C LT



  . L2 = [M L2 A−1 T−2]  (6.5) 
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 SI Unit of Magnetic Flux: The SI unit of magnetic flux is Weber (Wb). The flux through a unit surface 

area (A) in a unit magnetic field (B) is said to be one Weber, if the flux is passing normally through the 
surface. 

 i.e. 1 Weber = 1 Tesla × 1 meter2 (6.6) 

 CGS Unit of Magnetic Flux: The CGS unit of magnetic flux is Maxwell (Mx). The flux through a unit 
surface area (A) in a unit magnetic field (B) is said to be one Maxwell, if the flux is passing normally 
through the surface. 

 i.e. 1 Maxwell = 1 Gauss × 1 cm2  

 So, 1 Maxwell = (1 × 10−4 Tesla) × (1 × 10−4 m2) = 10−8 Tm2 = 10−8 Wb  

 or, 1 Weber = 108 Maxwell 

 Positive and Negative Flux: If the angle between magnetic 
field (B) and the normal to the surface area (A) is given as    
θ = 0°, as shown in the Fig. 6.3 (a), the flux is said to be 
positive. On the other hand, if the angle between magnetic 
field (B) and the normal to the surface area (A) is given as    
θ = 180°, as shown in the Fig. 6.3 (b), the flux is said to be 
negative. 

6.3 Electromagnetic Induction: The flow of electric charge is associated with a magnetic field around it. 
So, an electric current and the magnetism are intimately inter-related. In the early part of nineteenth 
century various experiments and postulates of many scientists established the fact that, moving charges 
produce a magnetic field around them. The converse effect is also true, i.e. moving magnets or more 
precisely changing magnetic fields can produce electric current. The great scientist Michael Faraday in 
England and Joseph Henry in U.S.A. discovered in 1831 that, currents can be produced in the 
conducting loops, if a magnet is suddenly moved towards the loop or away from the loop, such that the 
flux associated with the conducting loop changes. This induced current in the conducting loop exists as 
long as the flux associated with the loop is changing. This phenomenon of inducing the current with the 
help of changing magnetic fields is known as Electromagnetic Induction. 

 So, “the phenomenon of production of induced emf and induced currents due to a changing magnetic 
field linked with a closed circuit is known as Electromagnetic Induction”. 

 The phenomenon of electromagnetic induction is of great practical significance, as all the electrical 
machines around us works on the principals of electromagnetic induction, for easy and luxurious life of 
human being, whether they are generators for bulk production of electricity or transformers for changing 
the voltage levels for distribution and transmission or electric motors fitted in the home appliances of 
great importance in our daily life. 

6.4 Faraday’s Experiments for Electromagnetic Induction: The phenomenon of electromagnetic 
induction may be understood with the help of following experiments performed by Michael Faraday 
and Joseph Henry. 

 EXPERIMENT NUMBER 1; 
Induced emf with a Stationary 
Coil and Moving Magnet: Take 
a circular coil of thick insulated 
copper wire of several turns 
connected to a sensitive 
galvanometer to form a closed 
circuit, as shown in the          
Fig. 6.4 (a). 
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 i) If the North-pole of a strong bar magnet is moved quickly towards the coil, as shown in the          

Fig. 6.4 (a), the galvanometer shows a deflection towards the right to the zero mark. 

 ii) If the North-pole of a strong bar magnet is moved quickly away from the coil, as shown in the      
Fig. 6.4 (b), the galvanometer shows a deflection towards the left to the zero mark. 

 iii) If the above experiment is repeated by bringing quickly the South-pole of a strong bar magnet 
towards the coil or away from the coil, the galvanometer shows a deflection opposite to that 
obtained in the case of North-pole. 

 iv) If the magnet is held stationary, as shown in the Fig. 6.4 (c), the galvanometer shows no deflection 
at all. 

 Explanation: When the bar magnet is placed near the coil, a number of magnetic lines of force cross 
through the coil. As the magnet moves quickly towards the coil, the magnetic flux (the total number of 
magnetic lines of force passing through the coil) linked with the coil increases at a rapid rate, as a result 
of which an induced emf and hence an induced current is setup in the coil in a direction, so as to oppose 
the cause due to which it is being induced. Now, when the magnet moves quickly away from the coil, 
the magnetic flux (the total number of magnetic lines of force passing through the coil) linked with the 
coil decreases at a rapid rate, as a result of which an induced emf and hence an induced current is setup 
in the coil in another direction, so as to oppose the cause due to which it is being induced. When the 
magnet is at rest, there is no change in the magnetic flux linked with the coil, so the emf induced and 
hence the current induced in the coil is zero and the galvanometer shows no deflection. 

 EXPERIMENT NUMBER 2; Induced emf with a Stationary Magnet and Moving Coil: Similar 
results, as in experiment number 1, may be obtained in an arrangement, if the magnet is held stationary 
while the coil is kept moving, as shown in the Fig. 6.5. If the relative 
motion between the magnet and the coil is at faster rate, a large deflection 
may be obtained in the galvanometer, on the other hand if the relative 
motion between the magnet and the coil is at a slower rate, a small 
deflection will be obtained in the galvanometer. If the relative motion 
between the coil and the magnet is ceased, the deflection in the 
galvanometer become zero, i.e. no induced emf and hence no induced 
current. 

 We may conclude that, “the faster is the relative motion between the coil and the magnet, greater is the 
rate of change of the magnetic flux linked with the coil and hence larger is the induced emf and induced 
current in the coil”. 

 EXPERIMENT NUMBER 3; Induced emf by Varying Current in the 
Neighboring Coil: Two coils, P and S, are wound on a cylindrical support 
in vicinity of each other. The coil P, known as primary coil, is connected 
to a battery (emf E) through a rheostat (Rh) and a tapping key (k). The coil 
S, known as secondary coil, is connected to a sensitive galvanometer, as 
shown in the Fig. 6.6. 

 i) If the tapping key k is closed from its open position, the galvanometer 
shows a sudden and momentary deflection in one direction, which 
disappears quickly. Now, if the tapping key is released from its close 
position, the galvanometer again shows a momentary deflection in 
opposite direction to earlier, which also disappears quickly. 

 ii) If the tapping key is kept pressed continuously and a steady current flows through the primary coil 
P, the galvanometer does not show any deflection. 

 iii) If the current through the primary coil P is increased with the help of the rheostat (Rh), the induced 
current flows in the secondary coil S in the same direction as that at the time of make of the primary 
circuit. 
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 iv) If the current through the primary coil P is decreased with the help of the rheostat (Rh), the induced 

current flows in the secondary coil S in the same direction as that at the time of break of the primary 
circuit. 

 v) The deflection in the galvanometer becomes larger if the cylindrical support of iron                          
(a ferromagnetic material) is used in this setup. 

 Explanation: We know that the current flowing through a coil produces a magnetic field, direction of 
which may be given by Right Hand Thumb rule.  

 i) When the circuit is just closed from the open position with the help of tapping key (k), the current 
rises from zero to some steady state value, during which the flux produced by the coil also changes 
from zero to some steady state value. This changing flux is also associated with the secondary coil 
in the vicinity which induces an emf in it, so the galvanometer shows a momentary deflection and 
dies as soon as the current become steady in the circuit.  

 ii) When the circuit is made open from the closed position with the help of tapping key (k), the current 
decays from its steady state value to zero, during which the flux produced by the coil also changes 
from its steady state value to zero value. This changing flux is also associated with the secondary 
coil in the vicinity which induces and emf in it but reversed polarity, so the galvanometer shows a 
momentary deflection but in opposite direction to earlier and dies as soon as the current reaches 
zero in the circuit. 

 iii) When the current is increased in the circuit with the help of rheostat (Rh), the flux produced by the 
coil increases. This increasing flux causes the induced emf and induced current in the circuit and 
galvanometer shows a deflection in the same direction as that at the time of make of the primary 
circuit. 

 iv) When the current is decreased in the circuit with the help of rheostat (Rh), the flux produced by the 
coil reduces. This reducing flux causes the induced emf and induced current in the circuit and 
galvanometer shows a deflection in the same direction as that at the time of break of the primary 
circuit. 

 v) If an iron core is used as the support structure, the flux produced by the same current in the coil 
increases several thousand times due to relative permeability of iron, and hence the change in flux 
also becomes large on variation of current through the primary coil. So, the induced emf and 
induced current also become large in the secondary winding resulting in larger deflection in the 
galvanometer. 

 We may easily conclude from the above experiments that: 

 i) Whenever the magnetic flux linked (flux linkages) with a closed circuit change, an induced emf and 
hence an induced current is setup in the closed circuit. 

 ii) The higher the rate of change of magnetic flux linked (flux linkages) with the closed circuit, the 
greater is the induced emf and induced current in the closed circuit. 

6.5 Laws of Electromagnetic Induction: Michael Faraday gave the basic law for electromagnetic 
induction which gives the magnitude of induced emf, and Lenz’s law gives the direction of induced emf. 

 Faraday’s Law of Electromagnetic Induction and Lenz’s Law, collectively, are known as Laws of 
Electromagnetic Induction. 

 a) Faraday’s Law of Electromagnetic Induction:  

  First Law: Whenever the magnetic flux linked (flux linkages) with a closed circuit change, an emf 
(and hence a current) is induced in the closed circuit, which lasts as long as the change in flux is 
there. This phenomenon is known as electromagnetic induction. 

  Second Law: The magnitude of induced emf in the circuit is directly proportional to the rate of 
change of the flux linked with the circuit. 
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  i.e. e  d
d t
  (6.7)

  If there are N number of turns in the coil, the magnitude of the induced emf may be given as: 

   E  N × d
d t
  (6.8) 

 b) Lenz’s Law: This law states that, “the direction of induced current is in such a way, that it always 
opposes the cause due to which it is being induced”. So, the tendency of the induced current is to 
oppose the rate of change of magnetic flux linked with the coil (flux linkages of the coil). 

  So, E = – N × d
d t
  = – (d N

d t
  = – d

d t
  (6.9) 

  Where, (–) ve sign shows that, the electromagnetic quantity induced opposes the cause due to which 
it is being induced. The term λ = N ɸ, is known as flux linkages of the coil having N Turns.  

  If magnetic flux is in Weber and the time is in Seconds, the induced emf is in Volts. 

  If the magnetic flux linked with a coil changes from its initial value ɸ1 to a final value ɸ2 in time t, 
the average induced emf in the coil may be given as: 

   E = – N × 2 1)
t

  
 (6.9) 

  Where, (–) ve sign shows that, the electromagnetic quantity induced opposes the cause due to which 
it is being induced. 

6.6 Explanation of Lenz’s Law: Lenz’s law is another form of law of conservation of energy, i.e. energy 
can neither be created nor destroyed, although it may be converted from one form to another. 

 i) Now consider the setup, shown in the Fig. 6.7, for electromechanical energy conversion, where a 
north pole is coming towards a coil and the mechanical energy of the magnet is being converted into 
the electrical energy and is being dissipated in the coil and the galvanometer. When magnet moves 
towards the coil, the flux linked with the coil goes on increasing and increasing continuously, so the 
current induced in the coil may produce an equal amount of the flux in the opposite direction, so as 
to oppose this increasing flux. This may happen only when the induced 
current is in counter-clockwise direction in the coil, as shown in the figure. 
The reader may verify it himself, with the help of Right Hand Thumb Rule, 
that the face of the coil facing the magnet becomes a North pole. So, the 
magnet and the coil are repelling each other and we have to do some extra 
work to bring the magnet near to the coil. This work done on the magnet, to 
provide mechanical energy to the magnet, is being converted into the 
electrical energy due to this repulsion / opposition. And, the electrical 
energy so produced is being dissipated in the coil and the galvanometer, and 
hence the law of conservation of energy holds good.   

 ii) Now consider the setup, shown in the Fig. 6.8, for 
electromechanical energy conversion, where a north pole is going 
away from a coil and the mechanical energy of the magnet is being 
converted into the electrical energy and is being dissipated in the 
coil and the galvanometer. When magnet moves away from the 
coil, the flux linked with the coil goes on decreasing and decreasing 
continuously, so the current induced in the coil must produce an 
equal amount of the flux in the opposite direction so as to oppose 
this decreasing flux. This may happen only when the induced current is in clockwise direction in the 
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coil, as shown in the figure. The reader may verify it himself, with the help of Right Hand Thumb 
Rule, that the face of the coil facing the magnet becomes a South pole. So, the magnet and the coil 
are attracting each other and we have to do some extra work to move the magnet away from the 
coil. This work done on the magnet, to provide mechanical energy to the magnet, is being converted 
into the electrical energy due to this repulsion / opposition. And, the electrical energy so produced is 
being dissipated in the coil and the galvanometer, and hence the law of conservation of energy holds 
good. 

 So, we may conclude here that the Lenz’s Law is nothing but a consequence of Law of Conservation 
of Energy. 

Problem 6.1: A rectangular loop of area 20 cm × 30 cm is placed in a magnetic field of strength 0.3 T with its 
plane: i) normal to the magnetic field, ii) inclined 30° to the magnetic field, iii) parallel to the 
magnetic field. Determine the value of flux linked with the coil in each case.    

Solution: A = 20 × 30 cm2,          B = 0.3 T,            θ1 = 0°,            θ2 = (90° – 30°) = 60°,            θ3 = 90° 

 The flux linked with the coil in first case, when the plane of the coil is normal to magnetic field 
i.e. the angle between the magnetic field and normal to the plane of coil is θ1 = 0°, may be given 
as: 

  ɸ1 = B A cos θ1 = 0.3 × 0.20 × 0.30 × cos 0° = 0.018 Wb = 18 mWb 

 The flux linked with the coil in second case, when the plane of the coil is inclined at an angle of 
30° to magnetic field i.e. the angle between the magnetic field and the normal to the plane of 
coil is θ2 = (90° – 30°) = 60°, may be given as: 

  ɸ2 = B A cos θ2 = 0.3 × 0.20 × 0.30 × cos 60° = 0.018 × 1
2

 = 0.009 Wb = 9 mWb 

 The flux linked with the coil in third case, when the plane of coil is parallel to magnetic field i.e. 
the angle between the magnetic field and the normal to the plane of coil is θ3 = 90°, may be 
given as: 

  ɸ3 = B A cos θ3 = 0.3 × 0.20 × 0.30 × cos 90° = 0 (Zero) 

Problem 6.2: A small piece of metal conductor is dragged across the gap between the pole pieces of a magnet 
in 0.5 sec. The magnetic flux between the two pole pieces is 0.8 mWb. Determine the average 
induced emf in the conductor.    [NCERT] 

Solution: dt = 0.5 sec,          dɸ = 0.8 mWb 

 The average induced emf in the conductor may be given as: 

  E = – N × d
d t
  = – 1 × 

30.8 10
0.5

  = – 1.6 mV 

 Where (–)ve sign indicates the opposition of the cause due to which the emf is being induced.   

Problem 6.3: The magnetic flux through a coil perpendicular to the plane is varying according to the 
relation: ɸ = (5 t3 + 4 t2 + 2 t – 5) Wb.  

 Determine the induced current through the coil at t = 2 sec, if the resistance of the coil is 5 Ω.    
  [Punjab 1997-98] 

Solution: ɸ = (5 t 3 + 4 t 2 + 2 t – 5) Wb,            t = 2 sec,            R = 5 Ω 

 The induced emf in the coil may be given as: 

  E = – N × d
d t
  = – 1 × d

d t
 (5 t 3 + 4 t 2 + 2 t – 5) 
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 The induced current in the coil may be given as: 

  I = E
R

 = – d
d t

 (5 t 3 + 4 t 2 + 2 t – 5) × 1
5

 = – (15 t 2 + 8 t + 2) × 1
5

 

 So, the induced current in the coil at t = 2 sec may be given as: 

  I(t = 2 sec) =  – (15 t 2 + 8 t + 2) × 1
5

 = – [15 × (2)2 + 8 × (2) + 2] × 1
5

 = – 15.6 A 

 Where (–)ve sign indicates the opposition of the cause due to which the current is being 
induced.   

Problem 6.4: A square loop of side 10 cm and a resistance of 0.7 Ω is placed vertically in the east-west plane. 
A uniform magnetic field of 0.1 T is setup across the plane in the north-east direction. The 
magnetic field is decreased to zero in 0.7 sec at a steady rate. Determine the magnitudes of 
induced emf and induced current during this time interval. [NCERT] 

Solution: a = 10 cm (vertically in east-west plane),            R = 0.7 Ω,            

 B1 = 0.1 T (North-East direction),                       B2 = 0 T,            dt = 0.7 sec 

 Since the square loop is in east-west plane and the uniform magnetic field is setup across the 
plane in north-east direction, so the angle between the magnetic field and the normal to the loop 
may be given as:          θ = 45° 

 and, hence the flux linked initially with the square loop may be given as: 

  ɸ1 = B A cos θ = 0.1 × (0.1 × 0.1) × cos 45° = 0.707 mWb    

 Now, the magnitude of the induced emf may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 
3(0 0.707 10 )

0.7

   = 1.01 × 10−3 V = 1.01 mV 

 So, the magnitude of the induced current may be given as: 

  I = E
R

 = 
31.01 10

0.7

  = 1.443 × 10−3 A = 1.443 mA 

Problem 6.5: A coil, with 10 Ω resistance, has 1000 Turns and a flux of 0.55 mWb is crossing it at a certain 
point of time. If the flux decreases to 0.05 mWb in a duration of 0.1 sec, determine the induced 
emf and the total amount of charge that has flown through the coil in this time. 

Solution: R = 10 Ω,           N = 1000 Turns,          ɸ1 = 0.55 mWb,          ɸ2 = 0.05 mWb,          dt = 0.1 sec 

 The induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1000 × 
3(0.05 0.55) 10

0.1

   = 5 V 

 The charge flown through the coil in this duration may be given as: 

  q = I × dt = E
R

 × dt = 5
10

 × 0.1 = 0.05 C               

Problem 6.6: A coil, with an average diameter of 0.02 m, is placed perpendicular to a uniform magnetic field 
of 6000 T. If the induced emf is 11 V, when the magnetic field is changed to 1000 T in 4 sec, 
determine the number of turns in the coil. [CBSE 1993-94] 

Solution: d = 0.02 m,          θ = 0°,          B1 = 6000 T,          E = 11 V,            B2 = 1000 T,          dt = 4 sec 

 The initial and final flux passing through the coil may respectively be given as: 
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  ɸ1 = B1 A cos θ                  and,                  ɸ2 = B2 A cos θ 

 The expression for the induced emf in the N-turn coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

  

   = – N × 2 1( cos θ cos θ)B A B A
d t
  = – N × 2 1( ) cos θB B A

d t
    

 or, N = 
2 1( ) cos θ

E d t
B B A


 

 = 
2

2 1( ) (π / 4) cos θ
E d t

B B d


  
 

   = 
2

11 4 4
(6000 1000) π (0.02) cos 0

 
   

 = 28.011 ≈ 28 Turns   

Problem 6.7: An 88 cm long wire is bent into a circular loop and is placed perpendicular to the magnetic 
field of flux density 2.5 T. The loop is changed into a square of side 22 cm within a time period 
of 0.5 sec and simultaneously the flux density is increased to 3 T. Determine the value of 
induced emf. [Himachal 1989-90] 

Solution: l = 88 cm (circle),      θ = 0°,      B1 = 2.5 T,      a = 22 cm (square),        dt = 0.5 sec,      B2 = 3 T 

 Area of the circular loop and square loop may respectively be given as: 

  Acircle = π r 2 = π × 
2

2π
l 

 
 

 = π × 
2

0.88
2 π

 
 
 

 = 0.0616 m2 

 and, Asquare = 0.22 × 0.22 = 0.0484 m2 

 The initial and final flux passing through the loop may respectively be given as: 

  ɸ1 = B1 A1 cos θ = 2.5 × 0.0616 × cos 0° = 0.154 Wb  

 and, ɸ2 = B2 A2 cos θ = 3 × 0.0484 × cos 0° = 0.1452 Wb 

 So, the induced emf in the loop may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0.1452 0.154)
0.5

   = 0.0176 V = 17.6 mV   

Problem 6.8: A coil of mean area 500 cm2 and having 1000 Turns is held perpendicular to a uniform 
magnetic field of 0.4 Gauss. The coil is turned through 180° in 0.1 sec. Determine the average 
induced emf in the coil.  [MNREC 1987] 

Solution: A = 500 cm2,          N = 1000,          θ1 = 0°,          B = 0.4 G,          θ2 = 180°,          dt = 0.1 sec 

 The initial and final flux linkages of the coil may respectively be given as: 

  λ1 = N ɸ1 = N B A cos θ1 = 1000 × 0.4 × 10−4 × 500 × 10−4 × cos 0° = 2 × 10−3 Wb  

 and, λ2 = N ɸ2 = N B A cos θ2 = 1000 × 0.4 × 10−4 × 500 × 10−4 × cos 180° = – 2 × 10−3 Wb 

 The average induced emf in the coil may be given as: 

  E = –  λd
d t

 = – 2 1λ λ )
d t

 
 = – 

32 2) 10
0.1

    = 0.04 V = 40 mV 

Problem 6.9: A circular coil of radius 10 cm, 500 Turns and resistance of 2 Ω is placed with its plane 
perpendicular to the horizontal component of the earth’s magnetic field. It is rotated about its 
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vertical diameter through 180° in 0.25 sec. Determine the magnitude of average induced emf 
and average induced current in the coil. Horizontal component of the earth’s magnetic field at 
the place is given as 3 × 10−5 T.  [NCERT] 

Solution: r = 10 cm,            N = 500 Turns,            R = 2 Ω,            θ1 = 0°,            θ2 = 180°,             

 dt = 0.25 sec        BH = 3 × 10−5 T 

 The initial and final flux linkages of the coil may respectively be given as: 

  λ1 = N ɸ1 = N B A cos θ1 = 500 × 3 × 10−5 × π × (0.10)2 × cos 0° = 4.712 × 10−4 Wb 

 and, λ2 = N ɸ2 = N B A cos θ2 = 500 × 3 × 10−5 × π × (0.10)2 × cos 180° = – 4.712 × 10−4 Wb 

 The magnitude of average induced emf in the coil may be given as: 

  E = – λd
d t

 = – 2 1λ λ )
d t

 
 = – 

44.712 4.712) 10
0.25

    = 3.77 mV 

 The magnitude of average induced current in the coil may be given as: 

  I = E
R

 = 3.77
2

 = 1.885 mA   

Problem 6.10: A coil of cross sectional area A lies in a uniform magnetic field B with its plane perpendicular 
to the magnetic field. The normal to the coil makes an angle of 0° with the magnetic field. The 
coil rotates at uniform rate to complete one rotation in time T. Determine the average induced 
emf in the coil during the interval when the coil rotates: i) from 0° to 90°, ii) from 90° to 180°, 
iii) from 180° to 270°, iv) from 270° to 360°. Also discuss about the direction of current in two 
halves of the rotation of the coil. 

Solution: θ1 = 0°,            θ2 = 90°,             θ3 = 180°,            θ4 = 270°,            θ1 = 360° = 0° 

 For rotation of the coil from 0° to 90°: dt = 
4
T   

 The initial and final flux passing through the coil may respectively be given as: 

  ɸ1 = B A cos θ1 = B A cos 0° = B A   

 and, ɸ2 = B A cos θ2 = B A cos 90° = 0 

 The magnitude of average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0 )
( / 4)

B A
T

   = 4 B A
T

 

 For rotation of the coil from 90° to 180°: dt = 
4
T   

 The initial and final flux passing through the coil may respectively be given as: 

  ɸ1 = B A cos θ1 = B A cos 90° = 0  

 and, ɸ2 = B A cos θ2 = B A cos 180° = – B A 

 The magnitude of average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0)
( / 4)
B A
T

   = 4 B A
T
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 For rotation of the coil from 180° to 270°: dt = 
4
T   

 The initial and final flux passing through the coil may respectively be given as: 

  ɸ1 = B A cos θ1 = B A cos 180° = – B A   

 and, ɸ2 = B A cos θ2 = B A cos 270° = 0 

 The magnitude of average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0 ( )]
( / 4)

B A
T

    = − 4 B A
T

 

 For rotation of the coil from 270° to 360°: dt = 
4
T   

 The initial and final flux passing through the coil may respectively be given as: 

  ɸ1 = B A cos θ1 = B A cos 270° = 0   

 and, ɸ2 = B A cos θ2 = B A cos 360° = B A 

 The magnitude of average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0)
( / 4)
B A
T

   = − 4 B A
T

 

 Since the induced emf is negative in second half of the rotation, so the current will reverse its 
direction after first half of the rotation and the induced emf and induced current in the coil is 
alternating in nature. 

Problem 6.11: A conducting circular loop is placed in a uniform transverse magnetic field of 0.02 T. The 
radius of the loop begins to decrease, somehow, at a constant rate of 1 mm/sec. Determine the 
induced emf in the loop at the instant when the radius is 2 cm. 

Solution: θ = 0°,            B = 0.02 T,            d r
d t

 = – 1 mm/sec,            r = 2 cm 

 The magnetic flux linked with the loop of radius r may be given as: 

  ɸ = B A cos θ = B × π r 2 × cos 0° = π r 2 B 

 So, the induced emf may be given as: 

  E = – N × d
d t
  = – 1 × d

d t
 (π r 2 B) = – 2 π r B × d r

d t
 

   = – 2 π × 0.02 × 0.02 × (– 0.001) = 2.513 × 10−6 V = 2.513 µV               

Problem 6.12: Determine the magnetic flux linked with a rectangular coil of size 6 cm × 8 cm placed at right 
angle to a magnetic field of 0.5 Wbm−2. 

Solution: A = 6 × 8 cm2,            θ = 0°,            B = 0.5 T 

 The magnetic flux linked with the rectangular coil may be given as: 

  ɸ = B A cos θ = 0.5 × 6 × 8 × 10−4 × cos 0° = 2.4 × 10−3 Wb = 2.4 mWb 

Problem 6.13: A square coil, of side 20 cm and having 600 Turns, is placed with its plane inclined at 30° to a 
uniform magnetic field of 4.5 × 10−4 T. Determine the flux linkages of the coil.  

Solution: a = 20 cm,            N = 600 Turns,            θ = (90° – 30°) = 60°,            B = 4.5 × 10−4 T 
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 The flux linkages of the coil may be given as: 

  λ = N × ɸ = N × B A cos θ = 600 × 4.5 × 10−4 × (0.20)2 × cos 60°  

   = 5.4 × 10−3 Wb = 5.4 mWb 

Problem 6.14: The magnetic flux threading a coil changes from 12 mWb to 6 mWb in 0.01 sec. Determine the 
induced emf in the coil. [CBSE 1989-90] 

Solution: ɸ1 = 12 mWb,            ɸ2 = 6 mWb,            dt = 0.01 sec 

 The magnitude of average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 
36 12) 10

0.01

    = 0.6 V 

Problem 6.15: A magnetic field of flux density 1 Tesla acts normal to an 80 Turns coil of area 0.01 m2. 
Determine the induced emf in the coil, if this coil is removed from the magnetic filed in 0.1 sec.  
  [Haryana 2001-02] 

Solution: B1 = 1 T,           θ = 0°,           N = 80 Turns,           A = 0.01 m2,           dt = 0. 1 sec,            B2 = 0 

 The initial and final flux linkages of the coil may respectively be given as: 

  λ1 = N ɸ1 = N B1 A cos θ = 80 × 1 × 0.01 × cos 0° = 0.8 Wb 

  λ2 = N ɸ2 = N B2 A cos θ = N × 0 × A cos θ = 0 

 The induced emf in the coil may be given as: 

  E = – λd
d t

 = – 2 1λ λ )
d t

 
 = – 0 0.8)

0.1
   = 8 V 

Problem 6.16: A 70 Turns coil with average diameter of 0.02 m is placed perpendicular to a magnetic field of 
9000 T. If the magnetic field is changed to 6000 T in 3 sec, determine the magnitude of induced 
emf in the coil.   [CBSE 1993-94] 

Solution: N = 70 Turns,         d = 0.02 m,         θ = 0°,         B1 = 9000 T,         B2 = 6000 T,         dt = 3 sec 

 The induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – N × 2 1( cos θ cos θ)B A B A
d t
   

   = – N × 
2

2 1( ) [π ( ) / 4] cos θB B d
d t

     

   = – 70 × 
20 9000) π (0.02) cos 0

3 4
     


 = 21.99 V 

Problem 6.17: A magnetic field of flux density 10 T acts normal to a 50 Turns coil of 100 cm2 area. Determine 

the induced emf in the coil, if the coil is removed from the field in 1
20

 sec. 

Solution: B1 = 10 T,        θ = 0°,          N = 50 Turns,          A = 100 cm2,          dt = 1
20

 sec,          B2 = 0 T 

 The induced emf in the coil may be given as: 
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  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – N × 2 1( cos θ cos θ)B A B A
d t
   

 or, E = – N × 2 1( ) cos θB B A
d t

    

   =  – 50 × 
40 10) 100 10 cos 0

(1/ 20)

       = 100 V 

Problem 6.18: A coil has 400 Turns and an area of 500 cm2. It is placed at right angles to a magnetic field of 
density 5 × 10−5 Tesla. The coil is rotated through 180° in 0.2 sec. Determine the average 
induced emf in the coil. 

Solution: N = 400 Turns,       A = 500 cm2,        θ1 = 0°,       B = 5 × 10−5 T,       θ2 = 180°,       dt = 0.2 sec 

 The average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – N × 2 1( cos θ cos θ )B A B A
d t
  

   = – N × 2 1(cos θ cos θ ) B A
d t

   = – 400 × 
5 4(cos 180 cos 0 ) 5 10 500 10

0.2

         

   = 0.01 V = 10 mV 

Problem 6.19: A coil, of area 0.04 m2 having 1000 Turns is suspended perpendicular to a magnetic field of 
density 5 × 10−5 T. It is rotated through 90° in 0.2 sec. Determine the average induced emf in 
the coil. 

Solution: A = 0.04 m2,        N = 1000 Turns,       θ1 = 0°,       B = 5 × 10−5 T,       θ2 = 90°,       dt = 0.2 sec 

 The average induced emf in the coil may be given as: 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – N × 2 1( cos θ cos θ )B A B A
d t
  

   = – N × 2 1(cos θ cos θ ) B A
d t

   = – 1000 × 
5(cos 90 cos 0 ) 5 10 0.04

0.2

       

   = 0.01 V = 10 mV 

Problem 6.20: A 40 cm long wire is bent into a rectangular loop 15 cm × 5 cm and placed perpendicular to a 
magnetic field of flux density 0.8 T. The loop is changed into a square of side 10 cm within 1 sec 
and simultaneously the flux density is increased to 1.4 T. Determine the value of induced emf in 
the coil. 

Solution: l = 40 cm,        A1 = 15 × 5 cm2,       θ = 0°,       B1 = 0.8 T,       A2 = 10 × 10 cm2,       dt = 1 sec 

 B2 = 1.4 T 

 The initial and final flux passing through the loop may respectively be given as: 

  ɸ1 = B1 A1 cos θ = 0.8 × 15 × 5 × 10−4 × cos 0° = 0.006 Wb  

 and, ɸ2 = B2 A2 cos θ = 1.4 × 10 × 10 × 10−4 × cos 0° = 0.014 Wb 

 So, the induced emf in the loop may be given as: 



13 
 

  E = – N × d
d t
  = – N × 2 1)

d t
  

 = – 1 × 0.014 0.006)
1

   = – 0.008 V = – 8 mV 

 Where (–)ve sign indicates the opposition of the cause due to which the emf is being induced. 

Problem 6.21: An air cored solenoid of length 50 cm and area of cross section 28 cm2 has 200 Turns and 
carries a current of 5 A. The current decreases to zero within a time interval of 1 milli sec, 
when the current is switched OFF. Determine the average emf induced across the ends of the 
open switch in the circuit.   

Solution: l = 50 cm,          A = 28 cm2,          N = 200 Turns,          I1 = 5 A,          dt = 1 m-sec,          I2 = 0 

 The magnetic field created by the solenoid may be given as:    B = µ0 n I = 0µ N I
l

  

 The initial and final flux linkages of the solenoid may be given as: 

  λ1 = N × ɸ = N × B A = N × 0 1µ N I
l

 × A = 200 × 
74 π 10 200 5

0.50

    × 28 × 10−4 

   = 1.407 × 10−3 Wb-Turns 

  λ2 = N × ɸ = N × B A = N × 0 2µ N I
l

 × A = 0  

 So, the induced emf across the open switch may be given as: 

  E = – λd
d t

 = − 2 1(λ λ )
d t
  = – 

3

3
(0 1.407 10 )

1 10




 


 = 1.407 V     

Problem 6.22: A closed coil consists of 500 Turns on a rectangular frame of area 4 cm2 and has a resistance of 
50 Ω. It is kept with its plane perpendicular to a uniform magnetic field of 0.2 Tesla. Determine 
the amount of charge flowing through the coil when it is turned over (rotated through 180°). 
Will the induced emf depend on the speed at which the coil is rotated?     

Solution: N = 500 Turns,          A = 4 cm2,           R = 50 Ω,           θ1 = 0°,           B = 0.2 T,           θ2 = 180° 

 The initial and final flux linkages of the coil may be given as: 

  λ1 = N ɸ = N B A cos θ1 = N B A cos 0° = N B A 

 and, λ2 = N ɸ = N B A cos θ2 = N B A cos 180° = – N B A 

 The induced emf in the coil may be given as: 

  E = – λd
d t

 = – 2 1(λ λ )
d t


 = – ( )N B A N B A
d t

   = 2 N B A
d t

 

 The amount of charge flowing through the coil may be given as: 

  q = I × d t = E
R

 × d t = 2 N B A
d t

 × 1
R

 × d t = 2 N B A
R

 (6.10) 

   = 
42 500 0.2 4 10

50

     = 1.6 × 10−3 C 

 The reader may observe from equation (6.10) that the amount of charge flowing through the coil 
is independent of the time taken in the rotation, so it does not depend on the speed of rotation of 
the coil. 
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Problem 6.23: The magnetic flux through a coil perpendicular to its plane and directed into the plane of the 

paper is varying according to the relation ɸ = (5 t 2 + 10 t + 5) milli-Wb. Determine the emf 
induced in the coil at t = 5 sec.     

Solution: ɸ = (5 t 2 + 10 t + 5) m-Wb,          t = 5 sec 

 The induced emf in the coil may be given as: 

  E = – N × d
d t
  = – 1 × d

d t
 (5 t 2 + 10 t + 5) × 10−3 = – (10 t + 10) × 10−3  

   = – (10 × 5 + 10) × 10−3 = – 60 × 10−3 V = – 60 mV 

 Where (–)ve sign indicates the opposition of the cause due to which the emf is being induced.   

6.7 Dynamic (Motional) EMF from Faraday’s Law: The emf induced across the ends of a conductor due 
to its motion (dynamics) in a magnetic field is known as Dynamic / Motional Emf. 

 Consider a conductor PQ of length l free to move on U shaped conducting 
rails situated in a uniform and time dependent magnetic field B, directed 
normally into the plane of paper. The conductor PQ is moved towards left 
with a speed v, so that the area of the loop PQRS continuously decreases. 
This results in the decrement of the magnetic flux linked with the closed 
loop, and hence an emf is being induced in the loop PQRS, due to which 
an induced current flows in the loop PQRS. The direction of the induced 
current may be determined using Fleming’s Right hand Rule. 

 Let us assume that at a certain instant (t) the length of the loop (PS) inside 
the magnetic field is x. So, the magnetic flux linked with the loop PQRS at 
this instant of time may be given as: 

  ɸ = B A = B × l x 

 The induced emf in the loop, according to Faraday’s law of electromagnetic induction, may be given as: 

  E = – d
d t
  = – d

d t
 (B l x) = – B l d x

d t
 = B l v (6.11) 

 Where, d x
d t

 = – v, (–)ve sign indicates that the velocity v is in a direction tending to decrease the area of 

the loop inside the magnetic field. The induced emf (B l v) is known as dynamic / motional emf because 
this emf is induced due to the motion of a conductor inside the magnetic field. 

 Fleming’s Right Hand Rule: This rule gives the direction of 
induced emf and hence direction of induced current in a conductor, 
moving perpendicular to a magnetic field inside the magnetic field. 

 If a conductor is moving in the perpendicular direction to that of the 
magnetic field, an emf and hence a current is being induced in the 
conductor according to Faraday’s law of electromagnetic induction, 
the direction of which may be given according to the Fleming’s 
Right Hand Rule, we call it F.B.I. (easy to remember: Federal 
Bureau of Investigation) as shown in the Fig. 6.10, F = Force,               
B = Magnetic Flux Density, I = Current. If the pointing finger is showing the direction of magnetic field 
and the thumb is showing the direction of applied force or motion of the conductor, the direction of 
induced emf and induced current may be given by the middle finger. 
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 This is generating action, as mechanical energy of the moving conductor is being converted into 

electrical energy. So, Fleming’s Right Hand Rule is for Generator, while Fleming’s Left Hand Rule 
is for Motor. 

 In general Fleming’s Right Hand Rule is known as the Generator / Generating Rule. 

6.8 Dynamic (Motional) EMF from Lorentz Force and Energy Consideration: A conductor has a large 
number of free electrons. When it moves in a magnetic field, its free electrons also moves with the 
conductor. We know that the moving charge in a magnetic field 
experiences the Lorentz Force, the direction of which may be given by 
Fleming’s Left Hand Rule. Now consider the Fig. 6.11, where a conductor 
PQ of length l is free to move on U shaped conducting rails situated in a 
uniform and time dependent magnetic field B, directed normally into the 
plane of paper. The conductor PQ is moving towards the left on U shaped 
conducting rails with a velocity v, so the equivalent current (Ie) due to 
these moving electrons is in the direction towards right. The reader may 
verify by applying Fleming’s Left Hand Rule that the free electrons of the 
conductor PQ will experience a force in the direction QP. The magnitude 
of the force experienced by the free electrons of the conductor PQ may be given as: 

  Fm = q v B     (6.12) 

 The free electrons of the conductor PQ will start to accumulate at the end P under the influence of this 
Lorentz force. So, there is a negative potential at the end P and a positive potential at the end Q. An 
electric field is setup inside the conductor PQ directed from Q to P. The electrons accumulated at the 
end P will experience a force Fe, due to this electric field towards the end Q, which may be given as: 

  Fe = q E


  (6.13) 

 The electrons continue to accumulate at the end P until both these forces become equal for the 
equilibrium condition. So, the electric field at the equilibrium condition may be given by the 
relationship: 

  Fe = Fm                  or,                  q E


  = q v B   

 or, E


  = v B (6.14) 

 The potential difference developed across the ends P and Q may be given as: 

  V = E


 × l = B l v (6.15) 

 So, the induced emf across the points P and Q may be given as: 

  E = V = B l v  (6.16) 

 So, a current (I) starts to flow in the loop PQRS in the clock-wise direction under the influence of this 
induced emf. 

 The induced emf (B l v) is known as dynamic / motional emf because this emf is induced due to the 
motion of a conductor inside the magnetic field. 

 Current Induced in the Loop: Let R be the resistance of the complete loop PQRS, as shown in the Fig. 
6.11. Then, the current flowing through the loop under the influence of the induced emf (E) may be 
given as: 

  I = E
R

 = Bl
R

v   (6.17) 
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 Force experienced by the Movable Arm: Since the current carrying arm (PQ) is placed inside a 

magnetic field, it will experience a force, which may be given as: 

  F = B I l sin θ = B × Bl
R

v  × l × sin 90°  

 or, F = 
2 2B l
R

v    (6.18) 

 This force (F) experienced by the conductor due to magnetic field is in the direction opposite to that of 
the direction of movement of the conductor PQ, the reader may verify it by applying Fleming’s Left 
Hand Rule. So, the conductor PQ must be pulled with a force F, given by the equation (6.18), in order 
to move it at a constant velocity towards left. 

 Power Delivered by the External Force (F): The mechanical power supplied by the external force (F) 
to maintain the motion of the conductor PQ may be given as: 

  Pm = F × v = 
2 2B l
R

v  × v = 
2 2B l

R

2v  = 
2E

R
 = PE       (6.19.1) 

 or, Pm (Mechanical Power Supplied) = PE (Electrical Power Generated)  (6.19.2) 

 Power Dissipated as Joules / Heating Loss (PCu): The electrical power dissipated as joules / heating 
loss in the loop PQRS may be given as: 

  PCu = I 2 R = 
2Bl

R
 
 
 

v  × R = 
2 2B l

R

2v  = PE = Pm   (6.19.3) 

 So, we may conclude here that the mechanical power (Pm) supplied by the force 
(F) is being converted in the electrical power (PE) and then it is being lost as heat 
(PCu) in the resistance of the loop PQRS, i.e. the law of conservation of the energy 
holds good for this system. The electrical equivalent of this system may be drawn 
as shown in the Fig. 6.12.  

6.9 Relation between Induced Charge and the Change in Magnetic Flux: The magnitude of induced 
emf in a conductor placed in a changing magnetic flux, according to Faraday’s Law of Electromagnetic 
Induction, may be given as: 

  E = d
d t
  (6.20) 

 The current flowing through a conductor having a resistance R due to this emf (E) may be given as: 

  I = E
R

 = d
d t
  × 1

R
                 or,                  d q

d t
 = d

d t
  × 1

R
  

 or, dq = d
R
  = Net Change in Magnetic Flux

Resistance of the conductor
 (6.21) 

 So, the charge transferred depends only on the net change in magnetic flux and the resistance of the 
conductor and is independent of the rate of change of magnetic flux. 

Problem 6.24: An aircraft with a wing span of 40 m flies with a velocity of 1080 km/hr in the west to east 
direction at a constant altitude (height) in the northern hemisphere, where the vertical 
component of earth’s magnetic field is 1.75 × 10−5 T. Determine the induced emf across the 
farthest ends of the wings due to the vertical component of earth’s magnetic field. [NCERT]      

+
-

P

Q R
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RPQRSE

 
Fig. 6.12 
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Solution: l = 40 m,          v = 1080 km/hr = 1080 × 5
18

 = 300 m/sec,            BV = 1.75 × 10−5 T 

 The induced emf due to vertical component of earth’s magnetic field across the farthest ends of 
the wings may be given as: 

  E = BV l v sin θ = 1.75 × 10−5 × 40 × 300 × sin 90° = 0.21 V  

Problem 6.25: A jet plane is travelling west at a velocity of 450 m/sec. If the horizontal component of earth’s 
magnetic field at this place is 4 × 10−4 Tesla and the angle of dip is 30°, determine the emf 
induced across the farthest ends of the wings of jet plane having a span of 30 m. [CBSE 2007-08]      

Solution: v = 450 m/sec,            BH = 4 × 10−4 T,            δ = 30°,            l = 30 m 

 The earth’s magnetic field may be given as: 

  B = 
cos δ

HB  

 The induced emf due to earth’s magnetic field may be given as: 

  E = B l v sin δ = 
cos δ

HB  × l v sin δ = BH l v tan δ  

   = 4 × 10−4 × 30 × 450 × tan 30° = 3.118 V 

 Alternatively: The jet plane is cutting the vertical component of earth’s magnetic field only, at 
an angle of 90°. The vertical component of earth’s magnetic field may be given as: 

  BV = BH tan δ 

 So, the induced emf due to earth’s magnetic field across the farthest ends of the wings may be 
given as: 

  E = BV l v sin θ = BH tan δ × l v sin 90° = BH l v tan δ  

   = 4 × 10−4 × 30 × 450 × tan 30° = 3.118 V    

Problem 6.26: A railway track running north-south has two parallel rails 1 m apart. Determine the value of 
induced emf across the rails, when a train passes at a speed of 90 km/hr. The horizontal 
component of earth’s magnetic field at that place is 3 × 10−5 T and angle of dip is 60°.  
  [Haryana 2000-01]      

Solution: l = 1 m,            v = 90 km/hr = 90 × 5
18

 = 25 m/sec,            BH = 3 × 10−5 T,            δ = 60° 

 The train is cutting the vertical component of earth’s magnetic field only, at an angle of 90°. 
The vertical component of earth’s magnetic field may be given as: 

  BV = BH tan δ 

 So, the induced emf due to earth’s magnetic field across the two rails may be given as: 

  E = BV l v sin θ = BH tan δ × l v sin 90° = BH l v tan δ  

   = 3 × 10−5 × 1 × 25 × tan 60° = 1.299 × 10−3 V = 1.299 mV 

Problem 6.27: A conductor of length 1 m falls freely under the gravity from a height of 10 m, so that it cuts the 
magnetic lines of force of the horizontal component of earth’s magnetic field of 3 × 10−5 Tesla. 
Determine the emf induced in the conductor.      

Solution: l = 1 m,            h = 10 m,            BH = 3 × 10−5 T 

 The velocity of the conductor, when it hits the ground, may be given by the relationship: 

l
v

BV  
Fig. 6.13 
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  v2 = u2 + 2 g h 

 or, v = 2 2u g h  = 2(0) 2 9.81 10    = 14 m/sec 

 So, the induced emf due to earth’s magnetic field across the conductor, when it hits the ground, 
may be given as: 

  E = BH l v sin θ = 3 × 10−5 × 1 × 14 × sin 90° = 0.42 × 10−3 V = 0.42 mV 

Problem 6.28: Twelve wires of equal length (10 cm each) are connected in the form of a Skelton-cube. i) If the 
cube is moving with a velocity of 5 m/sec in the direction of a magnetic field of 0.05 Tesla, 
determine the emf induced in each arm of the cube. ii) If the cube moves perpendicular to the 
field, what will be the induced emf in each arm?      

Solution: l = 10 cm,            v = 5 m/sec,            B = 0.05 T 

 The Cube is Moving in the Direction of Magnetic 
Field: Since the velocity of the cube is parallel to the 
magnetic field, so there will be no induced emf in any of 
the arm of the cube. 

 The Cube is Moving Perpendicular to the Direction of 
Magnetic Field: The arms AD, BC, FG and EH are 
perpendicular to both B and v, so the induced emf will be 
there only in these branches, and may be given as: 

  E = B l v sin 90° = 0.05 × 0.10 × 5 × 1 = 0.025 V = 25 mV  

Problem 6.29: A conducting rod PQ is shown in the Fig. 6.15 in contact with metal rails PS and RQ which are 
25 cm apart in a uniform magnetic field of flux density of 0.4 Tesla acting perpendicular into 
the plane of the paper. The ends of rails R and S are connected through a 5 Ω resistor. 
Determine the direction and magnitude of induced emf and induced current, if the rod PQ 
moves to the left with a velocity of 5 m/sec. If the rod moves to the right with the same speed, 
determine the new direction and magnitude of the induced current.      [ISCE 1994-95] 

Solution: l = 25 cm,            B = 0.4 T,            R = 5 Ω,            v = 5 m/sec 

 The magnitude of induced emf may be given as: 

  E = B l v sin θ = 0.4 × 0.25 × 5 × sin 90° = 0.5 V 

 So, the current flowing through the 5 Ω resistor may be given 
as: 

  I = E
R

 = 0.5
5

 = 0.1 A 

 The direction of the induced emf and the induced current may be given by the Fleming’s Right 
Hand Rule, and is clock-wise in the loop PQRS as shown in the figure for left side movement 
of the rod PQ. So, the induced current flows from the end R to the end S in the 5 Ω resistor. 

 If the rod moves towards right the magnitude of the induced emf and the induced current 
remains same but the direction will become reverse, i.e. counter-clock-wise in the loop PQRS, 
the reader may verify it applying Fleming’s Right Hand Rule. So, the induced current flows 
from the end S to the end R in the 5 Ω resistor. 

Problem 6.30: A metallic rod of length L is rotated at an angular speed ω, about its one end, normal to a 
uniform magnetic field B. Derive the expression for the: i) induced emf in the rod, ii) induced 
current, iii) heat dissipation, if the resistance of the rod is R.   [CBSE 2007-08] 

Solution: The flux swept by the rod in one revolution may be given as: 

A B
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  d ɸ = B × Acircle = B × π L2 

 The time taken by the rod to complete one revolution may be given as: 

  d t = 1
f

 = 1
(ω / 2 π)

 = 2π
ω

 

 So, the induced emf may be given as: 

  E = d
d t
  = 

2

(2 / )
B L 
 

 = 1
2

 B L2 ω 

 The induced current in the rod may be given as: 

  I = E
R

 = 
2 ω

2
B L

R
 

 The heat dissipated in time t may be given as: 

  H = P × t = 
2E t
R

 = 
2 4 2ω

4
B L t

R
   

Problem 6.31: A metal disc of radius R rotates with an angular speed ω about an axis perpendicular to its 
plane passing through its center in a magnetic field B


 acting perpendicular to the plane of the 

disc. Determine the induced emf between the rim and the axis of the disc. 

Solution: The flux swept by the disc in one revolution may be given as: 

  d ɸ = B × Adisc = B × π R 2 

 The time taken by the disc to complete one revolution may be 
given as: 

  d t = 1
f

 = 1
(ω / 2 π)

 = 2π
ω

 

 So, the induced emf may be given as: 

  E = d
d t
  = 

2

(2 / )
B R 

 
 = 1

2
 B R 2 ω 

Problem 6.32: A wheel with 10 metallic spokes each 0.5 m long is rotated with a speed of 120 rpm in a plane 
normal to the horizontal component of earth’s magnetic field BH = 0.4 Gauss. Determine the 
emf induced between the axel and the rim of the wheel. [NCERT] 

Solution: n = 10 spokes,            l = 0.5 m,          N = 120 rpm,              BH = 0.4 Gauss 

 The flux swept by each spoke in one revolution may be given as: 

  d ɸ = BH × π l 2 = 0.4 × 10−4 × π × (0.5)2 = 3.14 × 10−5 Wb 

 Speed of the rotation of the spokes may be given as: 

  N = 120 rpm = 120
60

 = 2 rps 

 So, the time taken by each spoke to complete one rotation may be 
given as: 
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  d t = 1
N

 = 1
2

 = 0.5 sec 

 The emf induced across each spoke may be given as: 

  e = d
d t
  = 

53.14 10
0.5

  = 6.28 × 10−5 V = 62.8 µV 

 As, all the ten spokes are connected as one end at the axel and one end at the rim, so they are 
connected in parallel. Hence the emf across the axel and the rim may be given as: 

  E = e = 62.8 µV  

Problem 6.33: A wheel with some metallic spokes each 1.2 m long is rotated with a certain speed in a plane 
normal to the magnetic field of intensity 0.5 Gauss. If the induced emf between the axel and the 
rim of the wheel is 10 mV, determine the speed of rotation of the wheel. 

Solution: l = 1.2 m,          B = 0.5 Gauss,              E = 10 mV 

 Since, all the spokes are connected as one end at the axel and one end at the rim, so they are 
connected in parallel. Hence, the emf across each individual spoke may be given as: 

  e = E = 10 mV 

 The flux swept by each spoke in one revolution may be given as: 

  d ɸ = B × π l 2 = 0.5 × 10−4 × π × (1.2)2 = 2.262 × 10−4 Wb 

 Let speed of the rotation of the spokes may be given as: 

  N rpm= 
60
N  rps 

 So, the time taken by each spoke to complete one rotation may be given as: 

  d t = 1
( / 60)N

 = 60
N

 sec 

 The emf induced across each spoke may be given by the relationship: 

  e = 10 × 10−3 = d
d t
  = 

42.262 10
(60/ )N

  = 
42.262 10

60
N   

 or, N = 
3

4
10 10 60
2.262 10




 


 = 2652.52 rpm  

Problem 6.34: A metallic rod of 1 m length is rotated with a frequency of 50 rps, with one end hinged at the 
center, about an axis passing through its center. A constant and uniform magnetic field of 1 T is 
present parallel to the axis of rotation of the rod. Determine the induced emf across the ends of 
the rod.  [NCERT]   

Solution: l = 1 m,            f = 50 rps,            B = 1 T  

 The flux swept by the rod in one revolution may be given as: 

  d ɸ = B × Acircle = B × π l 2 = 1 × π × (1)2 = π Wb 

 The time taken by the rod to complete one revolution may be given as: 

  d t = 1
f

 = 1
50

 = 0.02 sec 
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 So, the induced emf may be given as: 

  E = d
d t
  = 

0.02
  = 157.07 V 

Problem 6.35: A circular copper disc 10 cm in radius rotates at 20 π rad/sec about an axis through its center 
and perpendicular to the disc. If a uniform magnetic field of 0.2 Tesla is applied perpendicular 
to the rotating disc, determine: i) the induced emf across the axis of the disc and the rim, ii) the 
induced current, if the resistance of the disc is 2 Ω. [CBSE 2000-01]   

Solution: r = 10 cm,            ω = 20 π rad/sec,            B = 0.2 T,            R = 2 Ω 

 The flux swept by the disc in one revolution may be given as: 

  d ɸ = B × Adisc = B × π r 2 = 0.2 × π × (0.10)2 = 6.283 × 10−3 Wb 

 The time taken by the rod to complete one revolution may be given as: 

  d t = θ
ω

 = 2 π
20 π

 = 0.1 sec 

 So, the induced emf may be given as: 

  E = d
d t
  = 

36.283 10
0.1

  = 62.83 × 10−3 V = 62.83 mV 

 The induced current may be given as: 

  I = E
R

 = 62.83
2

 = 31.415 mA 

Problem 6.36: A 0.5 m long metal rod PQ completes the circuit as shown in the Fig. 6.21. The plane of the 
circuit is perpendicular to the magnetic field of flux density 0.15 T. If the resistance of the total 
circuit is 3 Ω, determine the force required to move the rod in the direction as indicated with a 
constant speed of 2 m/sec.  [CBSE 2005-06]   

Solution: l = 0.5 m,           B = 0.15 T,            R = 3 Ω,            v = 2 m/sec 

 If a conductor moves inside a magnetic field, there will be an 
induced emf and an induced current (as the circuit is closed) in 
the conductor. The force required to move this current carrying 
conductor inside the magnetic field is equal to the force 
experienced by this current carrying conductor. So, the 
required force may be given as: 

  F = B I l sin θ = B × E
R

 × l sin θ  

   = B × sin θBl
R

v  × l sin θ = 
2 2 2sin θB l

R
v  = 

2 2 2(0.15) (0.5) 2 sin 90
3

     

   = 3.75 × 10−3 N 

Problem 6.37: A straight conductor of length 1 m moves with 2 m/sec at right angles to both, its length and a 
uniform magnetic field of strength 104 Gauss. Determine the value of induced emf in the 
conductor.   [Punjab 1995-96]   

Solution: l = 1 m,           v = 2 m/sec,            θ = 90°,            B = 104 Gauss = 1 T 

 The induced emf in the conductor may be given as: 
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  E = B l v sin θ = 1 × 1 × 2 × sin 90° = 2 V 

Problem 6.38: If a 10 m long metallic bar moves in a direction at right angle to a magnetic field with a speed 
of 5 m/sec, 25 V emf is induced in the bar. Determine the strength of the magnetic field in tesla. 
  [Punjab 1998-99]   

Solution: l = 10 m,           θ = 90°,            v = 5 m/sec,            E = 25 V 

 The expression for the induced emf in a long metallic bar may be given as: 

  E = B l v sin θ 

 So, B = 
sin θ
E

l v
 = 25

10 5 sin 90  
 = 0.5 Tesla  

Problem 6.39: A 0.4 m long straight conductor is moved in a magnetic field of induction 0.9 Tesla with a 
velocity of 7 m/sec. Determine the maximum induced emf in this conductor.   [Roorkee 1982]   

Solution: l = 0.4 m,           B = 0.9 T,            v = 7 m/sec 

 The maximum value of emf will be induced in this conductor when it moves at right angle to 
both, its length as well as the magnetic field. So, the maximum value of the induced emf in this 
conductor may be given as: 

  E = B l v sin 90° = 0.9 × 0.4 × 7 × 1 = 2.52 V 

Problem 6.40: A 1 km long horizontal telephone wire is lying east-west in earth’s magnetic field. It falls freely 
to the ground from a height of 10 m. Determine the emf induced in the wire on striking the 
ground. The horizontal component of earth’s magnetic field at this place is given as 0.32 Gauss.    

Solution: l = 1 Km = 103 m,            θ = 90°,           h = 10 m,            B = 0.32 Gauss 

 The velocity of the conductor, when it hits the ground, may be given by the relationship: 

  v2 = u2 + 2 g h 

 or, v = 2 2u g h  = 2(0) 2 9.81 10    = 14 m/sec 

 So, the induced emf due to earth’s magnetic field across the conductor, when it hits the ground, 
may be given as: 

  E = BH l v sin θ = 0.32 × 10−4 × 103 × 14 × sin 90° = 0.448 V 

Problem 6.41: A 24 cm long horizontal wire falls in the magnetic field of flux density 0.8 Tesla. Determine the 
emf induced in it at t = 3 sec, after it was dropped to fall. Suppose the wire moves 
perpendicular to its length as well as to the magnetic field. Given g = 9.8 m/sec2.    

Solution: l = 24 cm,            B = 0.8 T,            t = 3 sec,            θ = 90°,           g = 9.8 m/sec2 

 The velocity of the wire at t = 3 sec may be given as: 

  v = u + g t = 0 + 9.8 × 3 = 29.4 m/sec 

 So, the induced emf due to the magnetic field across the conductor, at t = 3 sec, may be given 
as: 

  E = B l v sin θ = 0.8 × 0.24 × 29.4 × sin 90° = 5.6448 V 

Problem 6.42: Two rails of a railway track insulated from each other and the ground are connected to a milli-
voltmeter. Determine the reading of the voltmeter, when a train travels at a speed of 180 km/hr 
along the track. Given that the vertical component of earth’s magnetic field is 0.2 × 10−4 Tesla 
and the rails are separated by 1 m.     [IIT 1981] 
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Solution: v = 180 km/hr = 180 × 5
18

 = 50 m/sec,            BV = 0.2 × 10−4 T,            l = 1 m,            θ = 90° 

 The train is cutting the vertical component of earth’s magnetic field only, at an angle of 90°. So, 
the induced emf due to earth’s magnetic field across the two rails may be given as: 

  E = BV l v sin θ = 0.2 × 10−4 × 1 × 50 × sin 90° = 1 × 10−3 V = 1 mV 

Problem 6.43: A train is running due north with a constant speed of 90 km/hr on a horizontal track. If the 
vertical component of earth’s magnetic field is 3 × 10−5 Tesla, determine the induced emf across 
the axel of the train of length 1.25 m.  [Haryana 2001-02] 

Solution: v = 90 km/hr = 90 × 5
18

 = 25 m/sec,            BV = 3 × 10−5 T,            l = 1.25 m,            θ = 90° 

 The train is cutting the vertical component of earth’s magnetic field only, at an angle of 90°. So, 
the induced emf due to earth’s magnetic field across the two rails may be given as: 

  E = BV l v sin θ = 3 × 10−5 × 1.25 × 25 × sin 90° = 0.9375 × 10−3 V = 0.9375 mV 

Problem 6.44: A jet plane is moving at a speed of 1000 km/hr. Determine the potential difference across the 
ends of its wings 20 m long. Given total intensity of earth’s magnetic field is 3.5 × 10−4 Tesla 
and the angle of dip at this place is 30°.  

Solution: v = 1000 km/hr = 1000 × 5
18

 = 277.778 m/sec,         l = 20 m,        B = 3.5 × 10−4 T,        δ = 30° 

 The jet plane is cutting the vertical component of earth’s magnetic field only, at an angle of 90°. 
The vertical component of earth’s magnetic field may be given as: 

  BV = B sin δ 

 So, the induced emf due to earth’s magnetic field across the farthest ends of the wings may be 
given as: 

  E = BV l v sin θ = B sin δ × l v sin 90° = B l v sin δ  

   = 3.5 × 10−4 × 20 × 277.778 × sin 30° = 0.972 V 

Problem 6.45: A straight rod 2 m long is placed in an airplane in the east-west direction. The airplane lifts 
itself in the upward direction at a speed of 36 km/hr. Determine the induced emf across the two 

ends of the rod, if the vertical component of the earth’s magnetic field is 1
4 3

 Gauss and the 

angle of dip is 30° at this place.   

Solution: l = 2 m,            v = 36 km/hr = 36 × 5
18

 = 10 m/sec,         BV = 1
4 3

 Gauss,         δ = 30° 

 When airplane is lifting itself vertically upwards, the horizontal component of earth’s magnetic 
field associated with the rod is changing, and the rod is moving at right angle (90°) to it being in 
east-west direction. 

 The horizontal component of earth’s magnetic field may be given as: 

  BH = 
tan δ

VB  = 1 1
tan 304 3




 = 0.25 Gauss 

 So, the induced emf due to earth’s magnetic field across the ends of the rod may be given as: 

  E = BH l v sin θ = 0.25 ×10−4 × 2 × 10 × sin 90° = 0.5 × 10−3 V = 0.5 mV 
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Problem 6.46: A metal wheel with 1 m long spokes is rotated in a magnetic field of flux density 2 × 10−4 Tesla 

normal to the plane of the wheel. An emf of π × 10−2 V is induced between the rim and the axel. 
Determine the rate of the rotation of the wheel.    

Solution: l = 1 m,            B = 2 × 10−4 Tesla,            E = π × 10−2 V 

 The expression for the emf induced may be given as: 

  E = d
d t
  = Flux Swept in One Rotation

Time Taken in One Rotation
 

 The flux swept in one rotation may be given as: 

  d ɸ = B × A = B × π l 2 

 If the speed of rotation is N rpm, the time taken by the wheel in one rotation may be given as: 

  d t = 1
f

 = 1
( / 60)N

 = 60
N

 

 So, E = 
2π

(60/ )
B l

N
  = 

2π
60

B l N   

 or, N = 2
60

π
E

B l
 = 

2

4 2
60 π 10

2 10 π (1)




 

  
 = 3000 rpm = 3000

60
 = 50rps  

Problem 6.47: A fan blade of length 2a rotates with frequency f Hz perpendicular to a magnetic field B. 
Determine the potential difference between the center and the end of the blade.     

Solution: l = 2a,            Frequency = f,            Magnetic flux density = B 

 The flux swept by the blade in one rotation may be given as: 

  d ɸ = B A = B × π (2a)2 = 4 π a 2 B 

 The time taken by the fan to complete one rotation may be given as: 

  d t = 1
f

 sec 

 So, the induced emf across the blade of the fan may be given as: 

  E = d
d t
  = 

24 π
(1/ )

a B
f

 = 4 π a 2 B f  Volts 

Problem 6.48: In a ceiling fan the blades are rotating in a circle of radius 0.5 m. If the fan is rotating at 20 rps 
and the vertical component of the earth’s magnetic field is 0.8 Gauss, determine the induced 
emf between the ends of each blade.     

Solution: r = 0.5 m,            f = 20 rps,            BV = 0.8 Gauss 

 The flux swept by the fan blade in one rotation may be given as: 

  d ɸ = B A = B × π (r)2 = 0.8 × 10−4 × π × (0.5)2 = 6.283 × 10−5 Wb 

 The time taken by the blade to complete one rotation may be given as: 

  d t = 1
f

 = 1
20

 = 0.05 sec 

 So, the induced emf across the blade of the fan may be given as: 

2a

  
Fig. 6.22 
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  E = d
d t
  = 

56.283 10
0.05

  = 1.2566 × 10−3 Volts = 1.2566 mV  

Problem 6.49: A metal disc of radius 200 cm is rotated at a constant angular speed of 60 rad/sec in a plane at 
right angle to an external magnetic field of intensity 0.05 Tesla. Determine the emf induced 
between the center and a point on the rim. [Punjab 1990-91]   

Solution: r = 200 cm,            ω = 60 rad/sec,            B = 0.05 T 

 The flux swept by the disc in one rotation may be given as: 

  d ɸ = B A = B × π (r)2 = 0.05 × π × (2)2 = 0.2 π Wb 

 The time taken by the metal disc to complete one rotation may be given as: 

  d t = θ
ω

 = 2π
60

 = π
30

 sec 

 The emf induced between the center of the disc and it’s rim may be given as: 

  E = d
d t
  = 0.2 π

(π/30)
 = 0.2 π×30

π
 = 6 V  

Problem 6.50: A copper disc of radius 10 cm is placed with its plane normal to a uniform magnetic field and it 
completes 1200 rotations per minute (rpm). If induced emf between the center and the edge of 
the disc is 6.284 mV, determine the intensity of the magnetic field.   

Solution: r = 10 cm,            N = 1200 rpm = 1200
60

 = 20 rps,            E = 6.284 mV 

 If the magnetic field is B


, the flux swept by the disc in one rotation may be given as: 

  d ɸ = B A = B × π (r)2 = B × π × (0.10)2 = 0.01 π B Wb 

 The time taken by the disc to complete one rotation may be given as: 

  d t = 1
f

 = 1
20

 = 0.05 sec 

 The emf induced between the center of the disc and it’s rim may be given by the relationship: 

  E = d
d t
  = 0.01×π

0.05
B  = 6.284 × 10−3 V 

 or, B = 
36.284 10 0.05

0.01 π

 


 = 0.01 T = 100 Gauss 

Problem 6.51: A gramophone disc of brass having diameter 30 cm rotates horizontally at a rate of 100
3

 rpm. If 

the vertical component of earth’s magnetic field is 100 Gauss, determine the induced emf 
between the center and the rim of the disc.   

Solution: d = 30 cm,            N = 100
3

 rpm = 100
3 60

 = 5
9

 rps,            B = 100 G = 0.01 T 

 The flux swept by the disc in one rotation may be given as: 

  d ɸ = B A = B × 
2π( )

4
d  = 0.01 × 

2π (0.30)
4

  = 7.069 × 10−4 Wb 
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 The time taken by the disc to complete one rotation may be given as: 

  d t = 1
f

 = 1
(5 /9)

 = 9
5

 = 1.8 sec 

 The emf induced between the center of the disc and it’s rim may be given as: 

  E = d
d t
  = 

47.069 10
1.8

  = 3.927 × 10−4 V = 0.3927 mV 

6.10 Methods of Generating Induced EMF: An induced emf may be produced by changing the magnetic 
flux linked with a closed loop / circuit. The magnetic flux (ɸ) linked with the coil of area A may be 
given as: 

  ɸ = B A cos θ (6.22) 

 The flux, linked with the loop, given by above equation may be changed in three different ways: 

 i) By changing the magnetic field B. 

 ii) By changing the area of the coil A. 

 iii) By changing the relative orientation (θ) between the magnetic field (B) and the area of the coil (A). 

 i) Induced EMF by Changing the Magnetic Field (B): We have already gone through the exercise 
in article 6.4 during the experiments by Michael Faraday to understand how an induced emf is 
being produced in a coil on changing the magnetic flux through it by: a) moving a magnet towards a 
stationary coil, b) moving a coil towards a stationary magnet, c) varying current in a neighboring 
coil to change the magnetic field. The direction of induced emf may be given by Fleming’s Right 
Hand Rule and Lenz’s Law. 

 ii) Induced EMF by Changing the Area of the coil (A): We have already gone through the exercise 
in article 6.7 and 6.8 that how an induced emf is being produced in a coil on changing the area of 
the coil, while placed in a constant uniform magnetic field. The magnitude of the induced emf may 
be given by the relationship: 

   E = B l v (6.23) 

  The direction of induced emf may be given by Fleming’s Right Hand Rule and Lenz’s Law. 

 iii) Induced EMF by Changing the Relative Orientation (θ) of the Magnetic Field (B) and the 
Area of the Coil (A): Consider a coil PQRS having N turns, as shown in the Fig. 6.23 (a), free to 
rotate in a constant uniform magnetic field ( B


). The axis of the rotation of the coil is perpendicular 

to the magnetic field. The flux passing through the coil, when it’s normal makes an angle θ with the 
magnetic field as shown in the Fig. 6.23 (b), may be given as: 

   ɸ = B A cos θ  (6.24) 

  Where, A is the area of the coil PQRS. 

  If the coil rotates about its axis at a constant angular speed 
ω and turns through an angle θ in time t, then: 

   θ = ω t 

  So, ɸ = B A cos ω t  (6.25) 

  As, the coil is rotating continuously at a constant angular speed ω, the flux linked with the coil is 
changing continuously (in a sinusoidal manner), and an emf will get induced across the rotating coil, 
which may be given as: 
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Q

R

S

Coil

(a)

B

(b)

n

θ

θ

Coil
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   E = – N × d
d t
  = – N × d

d t
 (B A cos ω t) = N B A ω sin ω t  (6.26.1) 

  or, E = E0 sin ω t = E0 sin 2 π f t (6.26.2) 

  Where, E0 = N B A ω (6.27) 

  and, f = frequency of the rotation of the coil = 2π
ω

 Hz (6.28) 

  So, the induced emf, in a rotating coil with a constant angular speed inside a constant uniform 
magnetic field, varies in sinusoidal manner with time t. 

  The induced emf (E) in the rotating coil: 

  1) If,  ω t = 0° 

   i.e. the plane of the coil is 
perpendicular to the magnetic 
field. 

    (sin ω t) = 0  

   Emf will have minimum value:  

    E = 0  

  2) If,  ω t = 90° 

   i.e. the plane of the coil is parallel 
to the magnetic field. 

    (sin ω t) = 1  

   Emf will have positive maximum 
value:  

    E = + N B A ω  

  3) If,  ω t = 180° 

   i.e. the plane of the coil is perpendicular to the magnetic field. 

    (sin ω t) = 0            so, Emf will again have minimum value: E = 0 

  4) If,  ω t = 270° 

   i.e. the plane of the coil is anti-parallel to the magnetic field. 

    (sin ω t) = – 1          so, Emf will have negative maximum value: E = – N B A ω  

  5) If,  ω t = 360° 

   i.e. the plane of the coil is perpendicular to the magnetic field. 

    (sin ω t) = 0            so, Emf will again have minimum value: E = 0 

  The pattern of changing of induced emf w.r.t. the orientation of the coil is shown in the Fig. 6.24, 
which indicates that the induced emf across the coil is alternating in nature and has a sinusoidal 
pattern. As the coil rotates continuously in the same manner, the same cycle of changes repeats 
again and again over the time period at constant time intervals. 

  Since, the induced emf in a coil rotating at a constant angular speed inside a constant and uniform 
magnetic field is alternating and sinusoidal, it is the basic principle of the dynamo and alternator 
being used for commercial generation of electricity.  
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Problem 6.52: A circular coil of area 300 cm2 and having 25 turns rotates about its vertical diameter with a 

constant angular speed of 40 sec−1 in a uniform horizontal magnetic field of magnitude 0.05 T. 
Determine the value of maximum induced emf in the coil.  [NCERT]   

Solution: A = 300 cm2,            N = 25 Turns,            f = 40 sec−1 = 40 Hz,            B = 0.05 T 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A × (2 π f)  

   = ± 25 × 0.05 × 300 × 10−4 × (2 π × 40) = ± 9.425 V     

Problem 6.53: A rectangular coil of size 100 cm × 50 cm and having 10 turns is rotated at 50 rps inside a 
magnetic field of strength 0.5 T. Determine the peak value of the voltage generated across the 
ends of the coil.  

Solution: A = 100 × 50 cm2,            N = 10 Turns,            f = 50 rps = 50 Hz,            B = 0.5 T 

 The peak value of the voltage generated across the ends of a coil rotating at a constant angular 
speed inside a uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A × (2 π f)  

   = ± 10 × 0.5 × (100 × 50 × 10−4) × (2 π × 50) = ± 785.398 V     

Problem 6.54: A coil of 500 turns, having an area of 50 cm2 and a resistance of 5 Ω, is rotating in a uniform 
magnetic field of strength 0.14 Tesla at a constant angular speed of 150 rad/sec. The induced 
emf across the coil is applied to an external resistance of 10 Ω. Determine the value of peak 
current flowing through the external resistance.   

Solution: N = 500 Turns,            A = 50 cm2,            
Rcoil = 5 Ω,                    B = 0.14 T,             
ω = 150 rad/s,                         Rext = 10 Ω 

 The peak value of the induced emf across 
the ends of a coil rotating at a constant 
angular speed inside a uniform magnetic 
field may be given as: 

  E0 = ± N B A ω  

   = ± 500 × 0.14 × 50 × 10−4 × 150 

   = ± 52.5 V 

 So, the peak value of current flowing through the external resistor may be given as: 

  I0 = 0

a ext

E
R R

 = ± 52.5
5 10

 = ± 3.5 A     

Problem 6.55: A rectangular coil, of size 0.2 m × 0.1 m having 2000 turns, is rotating in a uniform magnetic 
field about an axis parallel to its length and perpendicular to the direction of magnetic field 
having a strength of 0.02 Wb/m2. The speed of rotation of the coil is 4200 rpm. Determine:       
i) the maximum value of the induced emf in the coil, ii) the instantaneous value of induced emf 
when the plane of the coil has rotated through an angle of 30° from the initial position.   

Solution: A = 0.2 × 0.1 m2,            N = 2000 Turns,            B = 0.02 T,            n = 4200 rpm,            θ = 30° 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 
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  E0 = ± N B A ω = ± N B A (2 π f) = ± N B A × 2 π × 
60
n   

   = ± 2000 × 0.02 × 0.2 × 0.1 × 2 π × 4200
60

 = ± 351.858 V 

 The instantaneous value of the induced emf, when the coil has been rotated through an angle of 
30°, may be given as: 

  e = E0 sin ω t = E0 sin θ = 351.858 × sin 30° = 175.929 V 

Problem 6.56: A rectangular coil, of size 15 cm × 40 cm having 200 turns, is rotating in a uniform magnetic 
field at a constant angular speed of 50 rps about an axis perpendicular to the direction of 
magnetic field having a strength of 0.08 T. Determine the instantaneous value of the induced 
emf when the plane of the coil makes an angle with the magnetic lines of: i) 0°, ii) 60°, iii) 90°.   

Solution: A = 15 × 40 cm2,                       N = 200 Turns,                          n = 50 rps,            B = 0.08 T,             

 θ1 = (90° – 0°) = 90°,                θ2 = (90° – 60°) = 30°,               θ3 = (90° – 90°) = 0° 

 The angular speed of the rotation of the coil may be given as: 

  ω = 2 π f = 2 π × 50 = 100 π rad/sec 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A × (2 π f)  

   = ± 200 × 0.08 × 15 × 40 × 10−4 × (2 π × 50) = ± 301.593 V 

 The instantaneous value of the induced emf at three instants may respectively be given as: 

  e1 = E0 sin θ1 = 301.593 × sin 90° = 301.593 V 

  e2 = E0 sin θ2 = 301.593 × sin 30° = 150.797 V 

  e3 = E0 sin θ3 = 301.593 × sin 0° = 0 

Problem 6.57: A closely wound rectangular coil of 200 turns and size 30 cm × 10 cm is rotating in a magnetic 
field of induction 0.005 Tesla, with a frequency of revolution 1800 rpm about an axis normal to 
the field. Determine the maximum value of the induced emf.   

Solution: N = 200 Turns,            A = 30 × 10 cm2,            B = 0.005 T,            n = 1800 rpm 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A (2 π f) = ± N B A × 2π
60

n 
 
 

  

   = ± 200 × 0.005 × 30 × 10 × 10−4 × 2π 1800
60
 

 
 

 = ± 5.655 V 

Problem 6.58: A rectangular coil of dimensions 10 cm × 50 cm consists of 2000 turns and rotates about an 
axis parallel to its longer side with a speed of 2100 rpm inside a field of strength 0.1 T normal 
to the axis of rotation. Determine: i) the maximum value of induced emf in the coil, ii) the 
instantaneous value of induced emf when the coil is oriented at an angle of 60° to the magnetic 
field.   

Solution: A = 10 × 50 cm2,       N = 2000 Turns,       n = 2100 rpm,       B = 0.1 T,       θ = (90° – 60°) = 30° 
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 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 

uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A (2 π f) = ± N B A × 2π
60

n 
 
 

  

   = ± 2000 × 0.1 × 10 × 50 × 10−4 × 2π 2100
60
 

 
 

 = ± 2199.11 V 

 The instantaneous value of the induced emf may be given as: 

  e = E0 sin ω t = E0 sin θ = 2199.11 × sin 30° = 1099.56 V 

Problem 6.59: The armature coil of a generator has 20 turns and its area is 0.127 m2. Determine the speed, at 
which it must be rotated inside a magnetic field of 0.2 T, in order to induce an emf across the 
armature terminals having a peak value of 160 V. 

Solution: N = 20 Turns,            A = 0.127 m2,            B = 0.2 T,            E0 = 160 V 

 The expression for the maximum value of induced emf in a coil rotating at a constant angular 
speed inside a uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A (2 π f) = ± N B A × 2π
60

n 
 
 

 

 or, n = 60
2 π

E
N B A
  = 60 160

2 π 20 0.2 0.127


  
 = 3007.65 rpm  

   = 3007.65
60

 = 50.13 rps  

Problem 6.60: A 50 turn coil of area 500 cm2 is rotating at a rate of 50 rps perpendicular to a magnetic field 
of 0.5 Tesla. Determine the maximum value of induced emf in the coil. 

Solution: N = 50 Turns,            A = 500 cm2,            f = 50 rps,            B = 0.5 T 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A (2 π f) = ± 50 × 0.5 × 500 × 10−4 × (2 π × 50) = ± 392.7 V 

Problem 6.61: Determine the maximum emf induced in a coil of 100 turns and 0.01 m2 area rotating at the rate 
of 50 rps about an axis perpendicular to a uniform magnetic field of 0.05 Tesla. If the resistance 
of the coil is 30 Ω, determine the maximum power generated by the rotating coil. 

Solution: N = 100 Turns,            A = 0.01 m2,            f = 50 rps,            B = 0.05 T,            Rcoil = 30 Ω 

 The maximum value of induced emf in a coil rotating at a constant angular speed inside a 
uniform magnetic field may be given as: 

  E0 = ± N B A ω = ± N B A (2 π f) = ± 100 × 0.05 × 0.01 × (2 π × 50) = ± 15.708 V 

 The value of maximum power generated by the rotating coil may be given as: 

  P0 = 
2
0

coil

E
R

 = 
2(15.708)

30
 = 8.224 W 

6.11 Eddy Currents: We know very well, till this point of our discussion, that an emf is being induced in a 
coil / conductor, whenever there is a change in the magnetic flux linked with the coil / conductor. This 
induced emf lasts as long as the change in magnetic field is there. 
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 Now, consider a conducting sheet or cube or a solid of any shape which is associated with the changing 

magnetic field. This changing magnetic field associated with this conducting sheet / cube / body will 
induce an emf in the conducting body. As, the conducting body is quite large and has no defined paths 
for the flow of current, the induced emf causes the flow of currents inside the conducting body along 
irregular but closed paths and in the form of eddies / whirlpools in a plane perpendicular to the direction 
of the magnetic field.  

 The induced currents inside a conducting body and flowing along the closed random paths within the 
conducting body, associated with the changing magnetic field, are known as Eddy Currents. 

 The eddy currents, so induced, also obey the Lenz’s Law (another form of law of conservation of 
energy) and oppose the basic cause due to which they are being induced, i.e. the change in magnetic 
field will be opposed by the eddy currents. 

 The eddy currents, so induced, flow internally inside the solid conducting body along the random but 
closed paths. So, flow of these eddy currents causes the Joules Heating (I 2 R) Losses inside the solid’s 
conducting body and are known as Eddy Current Losses. The conducting body, exposed to changing 
magnetic fields, starts to heat up due to these Eddy Current Losses. 

 Experiments to Demonstrate the Eddy Currents: 

 Experiment Number 1: Take a plane conducting sheet and make a pendulum with the help of a 
suspending thread, as shown in the Fig. 6.26. This pendulum can be set to oscillate (to and fro) in a 
magnetic field created by two poles of a strong electromagnet 
facing each other as shown in the figure. When pendulum is 
made to swing without the magnetic field, i.e. the electromagnet 
is turned OFF, it continues to swing freely for a longer duration. 
But, when the electromagnet is turned ON, the pendulum comes 
to standstill quickly. This happens due to the induced eddy 
currents in the conducting sheet, which are opposing the cause 
of induction of the eddy currents, i.e. change in magnetic field. 
The induced eddy currents flow counter-clock-wise as the plate 
swings into magnetic field and clock-wise as the plate swings 
out of the magnetic field to oppose the change in magnetic field, 
the reader may verify himself by applying Lenz’s Law and 
Clock Rule.   

 Experiment Number 2: Take a plane conducting sheet, but with 
narrow slots cut in it, and make a pendulum with the help of a 
suspending thread, as shown in the Fig. 6.27. This pendulum can 
be set to oscillate (to and fro) in a magnetic field created by two 
poles of a strong electromagnet facing each other as shown in the 
figure. When pendulum is made to swing without the magnetic 
field, i.e. the electromagnet is turned OFF, it continues to swing 
freely for a longer duration. But, when the electromagnet is 
turned ON, the pendulum comes to standstill quickly, but this 
plate swings for longer duration than the plate without slots. This 
happens due to the fact that induced eddy currents has to follow a 
longer path in the conducting sheet, which offers more resistance 
to flow of eddy currents. Hence, smaller eddy currents are being 
induced in the slotted sheet than that of the sheet without slots. So, opposition to the oscillations became 
very small. The induced eddy currents flow counter-clock-wise as the plate swings into magnetic field 
and clock-wise as the plate swings out of the magnetic field to oppose the change in magnetic field, the 
reader may verify himself by applying Lenz’s Law and Clock Rule.        
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 Experiment Number 3: Take a cylindrical electromagnet which may be fed by an A.C. source and 

place a light metallic disc over it, as shown in the Fig. 6.28. As soon as the switch S is closed, an A.C. 
current sets up in the coil, which in turn sets up an alternating flux in the cylindrical electromagnet as 
well as inside the light metallic disc. The eddy currents are being induced in the light magnetic disc due 
to this alternating flux. These induced eddy currents 
tends to oppose the basic cause due to which they are 
being induced, i.e. the change in the magnetic flux linked 
with the light magnetic disc. So, if the top face of the 
electromagnet is a South pole at any instant of time, the 
bottom face of the light metallic disc will acquire the 
South polarity due to these eddy currents, resulting in a 
repulsive force. So, the light metallic disc is thrown up as 
soon as the current is switched ON in the electromagnet 
with the help of switch S. 

 Undesired Effects of Eddy Currents: As soon as the magnetic flux linked with the iron bodies of the 
transformer cores or the cylindrical cores of the motors changes due to the alternating nature of the flux 
or the rotation of the rotor’s iron body, the eddy currents are being induced in the iron cores. These 
induced eddy currents in the transformer cores or the cores of the stator / rotor iron body of the 
generators / motors cause eddy current losses, which appears as heat in the iron cores of electrical 
machines, which lowers the efficiency of the electrical machines. If these eddy current losses are not 
within the permissible limits, the insulation of the windings embedded in the iron core may get damaged 
and the electrical machine may get unusable in a short time period than expected. We must take care to 
minimize these losses at the time of designing of the electrical machine in order to ensure the proper 
working and longer life of the electrical machine. Each 10° C rise in working temperature of the 
electrical machine will reduce the life of an electrical machine by 50%. The eddy current losses (Pe) in 
the iron core may be given as: 

  Pe  f 2 (ɸm)2 (6.29) 

 Where, f = frequency of the changing (alternating) flux 

 and, ɸm = Maximum / peak value of the magnetic flux 

 Minimization of Eddy Currents and Eddy Current Losses: The eddy currents will get reduced, if the 
resistance offered by the iron body to the flow of eddy currents will increase. This may be done by the 
use of laminated punching / stampings, as shown in the Fig. 6.29 (b), in place of a solid iron body 
shown in the Fig. 6.29 (a). The laminated punching / 
stampings have layers of insulation material (varnish) 
over them, so the eddy currents of individual 
stampings remain confined to flow within the same 
sheet (stamping) only, as shown in the Fig. 6.29 (b). 
The effective area of cross section of each laminated 
stamping is quite small as compared to that of the solid 
iron body, so the resistance offered by each laminated 
stamping to the flow of current is quite high and hence 
induced eddy currents will reduce significantly by use 
of laminated punching / stampings in place of a solid iron body. 

 Applications of Induced Eddy Currents: Although, eddy currents are undesirable, but we can take 
some benefits of eddy currents and their characteristic behavior. Eddy currents are very useful in 
following devices, due to their peculiar behavior. 

 1) Induction Furnace: If a metal specimen is placed in a strong and rapidly changing magnetic field 
(generated by a very high frequency A.C. source), very large amount of heat is produced due to 
large induced eddy currents in the metal specimen as (Pe  f 2). This heat produced by induced eddy 
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currents is sufficient to even melt the metal specimen. This process is frequently used in extraction 
of some metals from their ores in metal industries with the device named as “Induction Furnace” 
according to its function. 

 2) Electromagnetic Damping: Since the induced eddy currents opposes the basic cause (i.e. the 
change in magnetic field) due to which they are being induced, so they may be better used for 
damping (to die out) any unwanted oscillations inside the magnetic field. When a current is passed 
through a galvanometer (ammeter / voltmeter), its coil gets deflected from its rest position, such that 
the deflection is proportional to the quantity of current flowing through it. But the pointer oscillates 
about its steady state value before coming to rest in the final position. As, the coil oscillates in the 
magnetic field, induced currents is set in the coil and in the core on which the coil is wound, and by 
virtue of their nature they opposes the oscillations of the coil before coming to rest at its final value. 
So, the oscillations of the coil are damped (died out). This process is known as “Electromagnetic 
Damping”. With a careful designing the galvanometer can be made dead beat, i.e. the coil does not 
oscillates at all, it gets deflected under the influence of the quantity to be measured and just comes 
to rest at its final position without any oscillations. 

 3) Electric Brakes: If a strong magnetic field is applied to the rotating drum attached to the wheel, the 
strong eddy currents induce in the drum and exert a torque on the drum in opposite direction to that 
of the motion in order to stop the train effectively and quickly. The electric braking is much more 
efficient than the mechanical breaking. 

 4) Speedometers: A magnet attached to the wheel rotates at the same speed (rpm) as that of the wheel 
placed inside the aluminum drum to make a speedometer. The aluminum drum is carefully pivoted 
and held in position by a hair spring. The rotating magnet induces eddy currents in the aluminum 
drum proportional to the speed of rotating magnet, and the aluminum drum gets deflected due to 
opposition of these induced eddy currents by an angle depending on the speed of rotation of magnet 
to give a deflection on the display of the speedometer. 

 5) Induction Motor: A rotating magnetic field is induced in a 3-phase induction motor and two 
rotating magnetic fields in a single phase induction motor but in opposite directions to each other. 
This rotating magnetic field produces the induced currents in rotor windings and induced eddy 
currents in the rotor body. These induced currents, by opposition of the relative speed between the 
rotating magnetic field and rotor, produces the required torque to rotate the rotor of the motor at 
certain speed to do some useful mechanical work. 

 6) Electromagnetic Shielding: The property of the eddy currents to 
provide opposition to the cause due to which they are being induced 
may be used for electromagnetic shielding. If a magnetic field is 
suddenly switched on, the large eddy currents will be induced in the 
conducting metallic sheet, as shown in the Fig. 6.29. The sudden 
change in the magnetic field is only partially detected at points (say 
P) on the other side of the sheet, as the induced currents are in such 
a direction so as to oppose the change in magnetic field to weaken 
the building up magnetic flux of the field. So, at the time of 
switching on the magnetic field an equal and opposite magnetic 
field is built up by the induced currents. 

 7) Inducto-thermy: The eddy currents may be used to heat localized tissues of the human body during 
medical treatment, known as Inducto-thermy. 

 8) Energy Meters: In old (mechanically rotating disc) type of energy meters, the aluminum disc 
rotates inside the magnetic field due to the interaction between induced currents produced due to 
two magnetic fields, one field energized by the load current and another field energized by the load 
voltage.    

B

N

P  
Fig. 6.30 
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6.12 Self Induction: A current flowing through a coil creates its own magnetic field associated with the coil 

itself. If somehow, the strength of current flowing through the coil changes, the flux associated with the 
coil also changes. This changing flux, associated with the coil, will induce an emf in the coil itself 
according to Faradays Law of Electromagnetic Induction. This is known as self induction in the coil, 
since the emf induced in the coil is result of the changing flux, due to changing current, produced due to 
the coil itself. 

 So, “the phenomenon of production of the induced emf in a coil itself, when a changing current flows 
through it, is known as Self Induction”. 

 A battery connected across a coil (known as Inductor, L) through a tapping switch is shown in the Fig. 
6.31 (a) and (b). When the tapping switch (S) is closed at an instant of time (t1), the current (I) through 
the inductor (L) rises from zero to its steady state 
value, i.e. the current flowing through the 
inductor (L) is changing rapidly from zero to its 
steady state value in a short duration. An emf 
will be induced in the inductor during this short 
duration of time as shown in the Fig. 6.30 (a). 
The polarity of the induced emf is also shown in 
the figure, which indicates that the emf so 
induced (Back Emf) opposes the rate of change 
of the current flowing through the inductor. 

 Now consider the Fig. 6.31 (b), when the tapping switch (S) is opened at another instant of time (t2), the 
current (I) through the inductor (L) falls from its steady state value to zero, i.e. the current flowing 
through the inductor (L) is changing rapidly from its steady state value to zero in a short duration. Again 
an emf will be induced in the inductor during this short duration of time as shown in the Fig. 6.31 (b). 
The polarity of the induced emf is also shown in the figure, which indicates that the emf so induced 
opposes the rate of change of the current flowing through the inductor. 

 Coefficient of Self Induction (L): The magnetic flux linkages of the coil (Inductor), having N turns, at 
any instant of the time may be given as: 

  λ  N ɸ  I (6.30.1) 

 or, λ = L I (6.30.2) 

 Where, L = Coefficient of Self Inductance or simply Inductance of the Coil / Inductor. 

 If the current is changing during any duration of time, the rate of change of the flux linkages associated 
with the coil (Inductor) may be given as: 

  λd
d t

 = L × d I
d t

    (6.31) 

 The emf induced due to this changing flux associated with the coil (Inductor) may be given according to 
Faraday’s Law of Electromagnetic Induction as: 

  E = – N × d
d t
  = – λd

d t
 = – L × d I

d t
 

 or, E = – N × d
d t
  = – L × d I

d t
 (6.32) 

 Where, L = Coefficient of Self Inductance or simply Inductance of the Coil / Inductor. 

 And, the (–)ve sign is due to Lenz’s law, indicating the opposition of the basic cause due to which the 
emf is being induced. 
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 Consider the equation (6.30.2), if I = 1 Amp, then λ = L. 

 So, “the self inductance of a coil / inductor may be defined as the flux linkages of the coil, when a unit 
current flows through the coil / inductor”. 

 Consider the equation (6.32), if d I
d t

 = 1 Amp/sec, then E = – L 

 So, “the self inductance of a coil / inductor may be defined as the emf induced in the coil, when the 
current flowing through the coil changes at a unit rate”. 

 S.I. Unit of Self Inductance: The reader may observe from equation (6.32) that: 

  L = 
( / )

E
d I d t

 = V
A/sec

 = V sec A−1 = Ω-sec = henery (H) 

 The self inductance of a coil is said to be One Henery, if an emf of one volt is induced in the coil when 
the current through the coil changes at a unit rate. 

 The reader may also observe form the equation (6.30.2) that: 

  L = λ
I

 = N
I
  = Wb×Turns

Amp
 = Wb-Turns A−1 or Wb A−1 

6.13 Self Inductance of A Long Solenoid: Consider a long solenoid of length l and radius r such that r ≪ l, 
and having n turns per unit length. If a current I flows through the coil of the solenoid, the magnetic 
field inside the solenoid is almost uniform and may be given as: 

  B = µ0 n I (6.33) 

 The magnetic flux linked with each turn of the solenoid may be given as: 

  ɸ = B A = µ0 n I A (6.34) 

 The flux linkages of the solenoid, having turns N = n l, may be given as: 

  λ = N ɸ = n l ɸ = n l × µ0 n I A = µ0 n2 I A l (6.35) 

 So, the self inductance of the solenoid may be given as: 

  L = λ
I

 = 
2

0µ n I Al
I

 = 
2

0µ ( / )N l I Al
I

 = 
2

0µ N A
l

 (6.36) 

 If the coil is wound over a magnetic material core having a relative permeability of µr, the self 
inductance of the solenoid may be given as: 

  L = 
2

0µ µr N A
l

 (6.37) 

 The reader may observe from above equation that: L  µr N 2 A 

  So, the self inductance depends upon the relative permeability of the material of the core, number of 
turns in the coil and the area of cross section of the turns or core of the solenoid. 

 Alternatively: Ampere circuital law may be written as: 

  H l = N I                            or,                  
0µ µr

B  l = N I 

 or, 
0µ µr A
  l = N I                  or,                  ɸ = 0µ µ r N A I

l
 (6.38) 



36 
 
 The induced emf across the coil may be given as: 

  E = – N × d
d t
  = – N × 0µ µ r N AId

d t l
 
 
 

   

   = – 
2

0µ µr N A
l

 × d I
d t

 = – L × d I
d t

 

 So, L = 
2

0µ µr N A
l

 (6.39) 

6.14 Phenomenon Associated with Self Inductance: Various peculiar phenomenon are associated with the 
self inductance of any circuit or element, due to which the performance parameters of a circuit changes / 
gets affected. Some of them are given below. 

 1. Sparking during Making and Breaking of a Circuit: The making and breaking of a circuit with 
the help of a switch is very sudden / quick process. When the switch is turned ON or turned OFF, a 
self induced emf sets up in the circuit, due to self inductance of the circuit, which opposes the 
change in current which is rising or falling very sharply. This induced emf acts at the small closing 
or opening gap of the switch and causes the breakdown of air. This results in sparking at the 
contacts of the switch during making or breaking of an electrical circuit. 

 2. Non- Inductive Winding: In standard resistance boxes and post office boxes, 
different resistance coils have to be used which must be standard and pure 
resistances (non-inductive resistances). For making a pure resistance, it must be 
ensured that the self inductance of the resistance must be zero. So, the wire, forming 
the standard resistance, must be doubled over itself and then wound in the form of a 
coil over a bobbin. Due to the doubling of the wire, as shown in the Fig. 6.32, the 
current in two halves of the wire flows in opposite directions. The inductive effects 
of the two halves of the coil, being in opposite directions, cancel each other. So, the 
net self inductance of the resistive coil is zero. Such a winding of the coil is known 
as non-inductive winding and can form a pure standard resistance for resistance 
boxes and post office boxes. 

 3. Electromagnetic Damping: Since the induced eddy currents opposes the basic cause (i.e. the 
change in magnetic field) due to which they are being induced, so they may be better used for 
damping (to die out) any unwanted oscillations inside the magnetic field. When a current is passed 
through a galvanometer (ammeter / voltmeter), its coil gets deflected from its rest position such that 
the deflection is proportional to the quantity of current flowing through it. But the pointer oscillates 
about its steady state value before coming to rest in the final position. As, the coil oscillates in the 
magnetic field, induced currents is set in the coil and in the core on which the coil is wound, and by 
virtue of their nature they opposes the oscillations of the coil before coming to rest at its final value. 
So, the oscillations of the coil are damped (died out). This process is known as “Electromagnetic 
Damping”. By careful designing a galvanometer can be made dead beat, i.e. the coil does not 
oscillates at all, it gets deflected under the influence of the quantity to be measured and just comes 
to rest at its final position without any oscillations. 

6.15 Mutual Induction: A current flowing through a primary coil (P) creates a magnetic flux. If a secondary 
coil (S) is placed in vicinity of the primary coil (P), the flux produced by the primary coil (P) links both 
the coils. Now, if the strength of current flowing through the primary coil (P) changes, the flux linked 
with both the coil also change. This changing flux, associated with the secondary coil (S), will induce an 
emf in the secondary coil (S) according to Faradays Law of Electromagnetic Induction. This is known 
as mutual induction, since the emf induced in the secondary coil (S) is due to the changing flux 
produced by the primary coil (P), because of the changing current in primary coil (P). 

 
Fig. 6.32 
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 So, “the phenomenon of production of the induced emf in one coil due to the change in current of its 

neighboring coil, when a changing current flows through the neighboring coil, is known as Mutual 
Induction”. 

 Two magnetically coupled coils (primary and secondary) placed in close vicinity are shown in the     
Fig. 6.33. A battery is connected across the primary coil through a tapping switch (k) and the secondary 
coil is shorted through the galvanometer. When the tapping switch (k) is closed at an instant of time (t1), 
the current (I) through the primary coil (P) rises from zero to its steady state value, i.e. the current 
flowing through the primary coil (P) is changing rapidly from zero to its steady state value in a short 
duration. As a result of this changing current and the changing flux produced by the primary coil, an 
emf will be induced in the secondary coil (S) during this short duration of time and can be detected by 
the deflection in galvanometer due to the current flowing through the galvanometer due to this induced 
emf. The polarity of the induced emf in secondary coil is such that it opposes the rate of change of the 
current flowing through the primary coil. 

 Now, if the tapping switch (k) is opened at another instant of time 
(t2), the current (I) through the primary coil (P) falls from its steady 
state value to zero, i.e. the current flowing through the primary coil 
(P) is changing rapidly from its steady state value to zero in a short 
duration. An emf will again be induced in the secondary coil (S) 
during this short duration of time. The polarity of the induced emf in 
secondary coil is such that it opposes the rate of change of the current 
flowing through the primary coil. 

 Coefficient of Mutual Induction (M): The magnetic flux linkages of the secondary coil (S) at any 
instant of time may be given as: 

  λ2 = N2 ɸ  I1 (6.40.1) 

  λ2 = M12 I1 (6.40.2) 

 If the current is changing during any duration of time, the rate of change of the flux linkages associated 
with the secondary coil (S) may be given as: 

  2λd
d t

 = N2 
d
d t
  = M12 × 1d I

d t
    (6.41) 

 The emf induced in secondary coil (S) due to these changing flux linkages associated with the secondary 
coil may be given according to Faraday’s Law of Electromagnetic Induction as: 

  E2 = – 2λd
d t

 = – N2 × d
d t
  = – M12 1d I

d t
 

 or, E2 = – N2 × d
d t
  = – M12 1d I

d t
 (6.42) 

 Where, M12 = Coefficient of Mutual Inductance or simply Mutual Inductance of the Combination. 

 The magnetic field produced by the primary coil may be given as: 

  B = µ0 n1 I1 (6.43) 

 The magnetic flux linked with each turn of the secondary coil may be given as: 

  ɸ = B A2 = µ0 n1 I1 A2 (6.44) 

 The flux linkages of the secondary coil, having turns N2 = n2 l, may be given as: 

  λ2 = N2 ɸ = n2 l ɸ = n2 l × µ0 n1 I1 A2 = µ0 n1 n2 I1 A2 l (6.45) 
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 So, the mutual inductance of the secondary coil may be given as: 

  M12 = 2

1

λ
I

 = 0 1 2 1 2

1

µ n n I A l
I

 = 0 1 2 1 2

1

µ ( / )( / )N l N l I A l
I

 = 0 1 2 2µ N N A
l

 (6.46) 

 If two coils are wound over the same core having a cross sectional area A, the mutual inductance of two 
coils may be given as: 

  M12 = 0 1 2µ N N A
l

 (6.47) 

 If two coils are wound over a magnetic material core having a relative permeability of µr and cross 
sectional area A, the mutual inductance of two coils may be given as: 

  M12 = 0 1 2µ µ r N N A
l

 (6.48) 

 The reader may observe from above equation that: M µr N1 N2 A  

  So, the mutual inductance between two coils depends upon the relative permeability of the material of 
the core, number of turns in each coil and the area of cross section of the turns or core. 

 Always remember that the coefficient of mutual inductance between two coils is: 

  M12 = M21 = M 

 Alternatively: Ampere circuital law for two coils wound on the same core of cross sectional area A may 
be written as: 

  H l = N1 I1                            or,                  
0µ µr

B  l = N1 I1 

 or, 
0µ µr A
  l = N1 I1                  or,                  ɸ = 0 1 1µ µr N A I

l
 (6.49) 

 The induced emf across the secondary coil may be given as: 

  E2 = – N2 × d
d t
  = – N2 × 0 1 1µ µ r N A Id

d t l
 
 
 

 = – 0 1 2µ µ r N N A
l

 × 1d I
d t

 = – M12 × 1d I
d t

 

 So, M12 = 0 1 2µ µ r N N A
l

 (6.50) 

 Coefficient of Coupling: The coefficient of coupling of two coils gives a measure of the manner in 
which two coils are coupled together. If L1 and L2 are the self inductances of two individual coils and M 
is the mutual inductance between two coils, then the coefficient of coupling between two coils may be 
given as: 

  K = 
1 2

M
L L

 (6.51) 

 The coefficient of coupling is a unit less quantity and its value lies between zero and one, i.e. 0 < K < 1. 

 If two coils are coupled perfectly together, i.e. all the flux produced by primary coil is linked with the 
secondary coil, the value of mutual inductance (M) is maximum and the coefficient of coupling is one, 
i.e. M = maximum and K = 1. 

 On the other hand, if two coils are not coupled at all, i.e. the flux produced by primary coil is not linked 
with the secondary coil, the value of mutual inductance (M) is minimum and the coefficient of coupling 
is zero, i.e. M = 0 and K = 0. 
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6.16 Grouping of Inductors: The inductors (coils) may be connected in series / parallel or a combination of 

series / parallel as similar to that of capacitors and resistors. Let us examine the equivalent expressions 
for their combinations. 

 Inductors Connected in Series: If the inductors are connected one end to another then to another and 
so on, such that the current carrying by all the inductors is identical, they are said to be series connected. 
The inductors may be connected in series in two different ways as given below. 

 i) Let us first examine the two inductors connected in series when both the inductors are carrying the 
same current in the same direction as shown in the Fig. 6.34. 

  The reader may observe that the two induced emf’s across the two 
inductors are in series. 

  So, E = E1 + E2 (6.52) 

  If the rate of change of the current flowing through two inductors 

is d I
d t

, the emf’s induced in two inductors may respectively be 

given as: 

   E1 = – L1 
d I
d t

 – M12 
d I
d t

 = – L1 
d I
d t

 – M d I
d t

 (6.53) 

  and, E2 = – L2 
d I
d t

 – M21 
d I
d t

 = – L2 
d I
d t

 – M d I
d t

 (6.54) 

  Now, E = E1 + E2 = – L1 
d I
d t

 – M d I
d t

 – L2 
d I
d t

 – M d I
d t

 

  or, – Leq 
d I
d t

 = – (L1 + L2 + 2 M) d I
d t

 

  So, Leq = (L1 + L2 + 2 M)  (6.55) 

  If two coils are far apart and have no mutual coupling, then M = 0 and the equivalent inductance of 
two series connected inductors may be given as: 

   Leq = (L1 + L2)  (6.56) 

  So, the general expression for N series connected inductors, having no mutual coupling at all, may 
be given as: 

   Leq = (L1 + L2 + L3 + …….. + LN) (6.57) 

 ii) Now, let us examine the two inductors connected in series when 
both the inductors are carrying the same current in opposite 
directions as shown in the Fig. 6.35. 

  The reader may observe that the two induced emf’s across the two 
inductors are in series. 

  So, E = E1 + E2 (6.58) 

  If the rate of change of the current flowing through two inductors 

is d I
d t

, the emf’s induced in two inductors may respectively be given as: 

E
E1

L1

E2

L2

I I

I

 
Fig. 6.34 

E
E1

L1
E2

L2

I I
I

 
Fig. 6.35 



40 
 

   E1 = – L1 
d I
d t

 + M12 
d I
d t

 = – L1 
d I
d t

 + M d I
d t

 (6.59) 

  and, E2 = – L2 
d I
d t

 + M21 
d I
d t

 = – L2 
d I
d t

 + M d I
d t

 (6.60) 

  Now, E = E1 + E2 = – L1 
d I
d t

 + M d I
d t

 – L2 
d I
d t

 + M d I
d t

 

  or, – Leq 
d I
d t

 = – (L1 + L2 – 2 M) d I
d t

 

  So, Leq = (L1 + L2 – 2 M)  (6.61) 

  If two coils are far apart and have no mutual coupling, then M = 0 and the equivalent inductance of 
two inductors connected in series may be given as: 

   Leq = (L1 + L2)  (6.62) 

  So, the general expression for equivalent inductance of N inductors connected in series, having no 
mutual coupling at all, may be given as: 

   Leq = (L1 + L2 + L3 + …….. + LN) (6.63) 

 Inductors Connected in Parallel: If the inductors are connected across same pair of points, such that 
the potential difference across two inductors is equal, they are said to be connected in parallel. 

 Consider two inductors connected in parallel as shown in the Fig. 6.36, the 
potential difference across two inductors is E and the current flowing 
through two inductors are I1 and I2 respectively, such that: 

  I = I1 + I2 (6.64) 

 Differentiating above equation w.r.t. the time t: 

  d I
d t

 = 1d I
d t

 + 2d I
d t

 (6.65) 

 If the rate of change of current through two inductors are 1d I
d t

 and 2d I
d t

 respectively, the emf induced 

across two inductors may respectively be given as: 

  E1 = E = – L1 1d I
d t

 – M12 2d I
d t

 = – L1 1d I
d t

 – M 2d I
d t

 (6.66) 

 and, E2 = E = – L2 2d I
d t

 – M21 1d I
d t

 = – L2 2d I
d t

 – M 1d I
d t

 (6.67) 

 Equating equations (6.66) and (6.67): 

  – L1 1d I
d t

 – M 2d I
d t

 = – L2 2d I
d t

 – M 1d I
d t

 

 or, (L1 – M) 1d I
d t

 = (L2 – M) 2d I
d t

 (6.68) 

 Now reconsider the equation (6.66): 
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  E = – L1 1d I
d t

 – M 2d I
d t

 = – L1 1d I
d t

 – M × 1 1

2

( )
( )
L M d I
L M d t





 

   = – 1 2 1 1

2

( ) ( )
( )

L L M M L M d I
L M d t

  



 = – 

2
1 2 1 1 1

2( )
L L L M L M M d I

L M d t
  




  

 or, E = – 
2

1 2 1

2( )
L L M d I

L M d t





 

 or, 1d I
d t

 = – 
2

1 2

2( )

E
L L M

L M
 
  

     (6.69) 

 Similarly reconsider the equation (6.67): 

  E = – L2 2d I
d t

 – M 1d I
d t

 = – L2 2d I
d t

 – M × 2 2

1

( )
( )
L M d I
L M d t





 

   = – 2 1 2 2

1

( ) ( )
( )

L L M M L M d I
L M d t

  



 = – 

2
1 2 2 2 2

1( )
L L L M L M M d I

L M d t
  




 

   = – 
2

1 2 2

1( )
L L M d I

L M d t





 

 or, 2d I
d t

 = – 
2

1 2

1( )

E
L L M

L M
 
  

     (6.70) 

 Putting equation (6.69) and (6.70) in equation (6.65): 

  d I
d t

 = 1d I
d t

 + 2d I
d t

 = – 
2

1 2

2( )

E
L L M

L M
 
  

 – 
2

1 2

1( )

E
L L M

L M
 
  

 

 or, – 
eq

E
L

 = – E × 2 1
2 2

1 2 1 2

( ) ( )
( ) ( )

L M L M
L L M L L M

  
 

  
 

 or,  1

eqL
 = 1 2

2
1 2

( 2 )
( )
L L M
L L M
 


 

 or, Leq = 
2

1 2

1 2

( )
( 2 )

L L M
L L M


 

 (6.71.1) 

 If two inductors are carrying the currents in opposite direction, the equivalent inductance may be given 
as: 

  Leq = 
2

1 2

1 2

( )
( 2 )

L L M
L L M


 

 (6.71.2) 

 If two coils are far apart and have no mutual coupling, then M = 0 and the equivalent inductance of two 
inductors connected in parallel may be given as: 
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  Leq = 1 2

1 2

L L
L L

 (6.72.1) 

 or, 1

eqL
 = 

1

1
L

 + 
2

1
L

 (6.72.2) 

 So, the general expression for equivalent inductance of N inductors connected in parallel, having no 
mutual coupling at all, may be given as: 

  1

eqL
 = 

1 2 3

1 1 1 1..........
NL L L L

 
    

 
 (6.73) 

Problem 6.62: Determine the self inductance of a coil, due to which a magnetic flux of 40 milli Weber is 
produced due to a current of 2 A flowing through it. [CBSE 2001-02]  

Solution: ɸ = 40 mWb,            I = 2 A 

 The flux produced by a current carrying coil may be given as: 

  ɸ = L I 

 So, L = 
I
  = 

340 10
2

  = 20 × 10−3 H = 20 mH  

Problem 6.63: A 200 turn coil, having a self inductance of 20 mH, carries a current of 4 mA. Determine the 
magnetic flux linked with each turn of the coil.  

Solution: N = 200 Turns,            L = 20 mH,            I = 4 mA 

 The total flux produced by the coil may be given as: 

  ɸ = L I 

 So, the flux linked with each turn of the coil may be given as: 

  ɸTurn = L I
N

 = 
3 320 10 4 10
200

     = 4 × 10−7 Wb/turn 

Problem 6.64: If a rate of change of current of 4 A/sec induces an emf of 10 mV in a solenoid, determine the 
self inductance of the solenoid. [CBSE 1995-96]  

Solution: d I
d t

 = 4 A/sec,            E = 10 mV 

 The expression for the induced emf in a solenoid due to changing current may be given as: 

  E = – L × d I
d t

            (negative sign shows opposition only) 

 or, L = 
( / )

E
d I d t

 = 
310 10

4

  = 2.5 × 10−3 H = 2.5 mH  

Problem 6.65: A 12 V battery is connected to a 6 Ω, 10 H coil through a switch drives a constant current 
through the circuit. The switch is suddenly opened. If it takes 1 milli sec to open the switch, 
determine the average emf induced across the switch.  

Solution: V = 12 V,            R = 6 Ω,            L = 10 H,            d t = 1 ms 

12 V

I

6 Ω 10 HCoil

+ _
I

S

E +_

 
Fig. 6.37 
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 The induced emf across the coil will appear across the switch when current interrupts from its 

steady state value to zero. 

 The value of steady state current through the circuit may be given as: 

  I = V
R

 = 12
6

 = 2 A  

 (As inductor behaves as short circuit for steady state current, i.e. d I
d t

 = 0) 

 So, the change in current in the coil during the time d t may be given as: 

  d I = Ifinal – Iinitial = 0 – 2 = – 2 A 

 So, the induced emf across the switch may be given as: 

  E = – L × d I
d t

 = – 10 × 3
2

1 10
   

 = 20,000 V = 20 kV  

Problem 6.65: An inductor of 5 H self inductance carries a steady current of 2 A. How can a self induced emf 
of value 50 V be made to appear across the inductor? [Punjab 2000-01]  

Solution: L = 5 H,            I = 2 A,            E = 50 V 

 The expression for the induced emf in a solenoid due to changing current may be given as: 

  E = – L × d I
d t

            (negative sign shows opposition only) 

 or, d t = L d I
E
  = 5 (2 0)

50
   = 0.2 sec 

 Hence, a self induced emf may be made to appear across this inductor, if the current of 2 A is 
interrupted within 0.2 sec. 

Problem 6.66: Determine the self inductance of an air cored solenoid having length of 50 cm, radius of 2 cm 
and 500 Turns.   

Solution: l = 50 cm,            r = 2 cm,            N = 500 Turns 

 The self inductance of the solenoid may be given as: 

  L = 
2

0µ µr N A
l

 = 
2 2

0μ μ (π )r N r
l

 = 
7 2 24 π 10 1 (500) π (0.02)

0.50

       

   = 7.896 × 10−4 H = 0.7896 mH  

Problem 6.67: An air cored solenoid with 30 cm length, area of cross section 25 cm2 and 500 turns, carries a 
current of 2.5 A. The current through the solenoid is suddenly switched OFF in a short duration 
of time of 1 milli-sec. Determine the average back emf induced across the ends of the open 
switch in the circuit.    [NCERT] 

Solution: l = 30 cm,            A = 25 cm2,            N = 500 Turns,            I = 2.5 A,            d t = 1 ms 

 The self inductance of the solenoid may be given as: 

  L = 
2

0µ µr N A
l

 = 
7 2 44 π 10 1 (500) 25 10

0.30

        

   = 2.618 × 10−3 H = 2.618 mH 
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 The induced emf in the solenoid due to changing current will appear across the open switch and 

may be given as: 

  E = – L × d I
d t

 = – 2.618 × 10−3 × 3
(0 2.5)
1 10



 = 6.545 V 

Problem 6.68: A large circular coil of radius R, and a small circular coil of radius r are put in vicinity of each 
other. If the coefficient of mutual induction for this pair is 1 mH, determine the flux linked with 
the larger coil when a current of 0.5 A flows through the smaller coil. 

 If the current in the smaller coil suddenly falls to zero, what would be its effect on the larger 
coil?      [CBSE 2007-08] 

Solution: rlarge coil = R,            rsmall coil = r,           M = 1 mH,            I1 = 0.5 A 

 The flux linked with the larger coil may be given as: 

  ɸlarge coil = M I1 = 1 × 10−3 × 0.5 = 0.5 × 10−3 Wb = 0.5 mWb 

 If the current in the smaller coil suddenly falls to zero, the flux linked with the larger coil 
changes and an induced emf will be produced across the larger coil given by the relationship: 

  Elarge coil = – M 1d I
d t

 = – 1 × 10−3 × 0.5
d t

 = 0.5
d t

 mV    

Problem 6.69: Determine the mutual inductance of a pair of coils, if a current change of 6 A in one coil causes 
the flux in the second coil of 2000 turns to change by 1.2 mWb/turn.     

Solution: d I1 = 6 A,            N2 = 2000 Turns,           (d ɸ2)per turn = 1.2 mWb/turn 

 The total flux linked with the second coil may be given as: 

  ɸ2 = M I1 

 or, d ɸ2 = M d I1 

 The flux linked with the individual turn of the second coil may be given as: 

  (d ɸ2)per turn = 2

2

d
N
  = 1

2

M d I
N

 

 or, M = 2 2 per turn

1

( )N d
d I

 
 = 

32000 1.2 10
6

   = 0.4 H    

Problem 6.70: An emf of 0.5 V is developed in a secondary coil, when the current in primary coil changes from 
5 A to 2 A in 300 milli-seconds. Determine the mutual inductance of two coils. [ISCE 1992-93]     

Solution: E = 0.5 V,            d I1 = 2 – 5 = – 3 A,           t = 300 milli-seconds 

 The expression for the induced emf in secondary coil due to change in the current of primary 
coil may be given as: 

  E2 = – M × 1d I
d t

            (negative sign shows opposition only) 

 or, M = – 
1( / )
E

d I d t
 = – 

30.5 300 10
( 3)

 


 = 0.05 H = 50 mH 

Problem 6.71: If the current in the primary circuit of a pair of coils changes from 5 A to 1 A in 0.02 sec, 
determine: i) the induced emf in the secondary coil if the mutual inductance between the two 
coils is 0.5 H, ii) the change of flux per turn in the secondary, if it has 200 Turns.     
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Solution: d I1 = 1 – 5 = – 4 A,           t = 0.02 sec,            M = 0.5 H,            N2 = 200 Turns 

 The expression for the induced emf in secondary coil due to change in the current of primary 
coil may be given as: 

  E2 = – M × 1d I
d t

            (negative sign shows opposition only) 

   = – 0.5 × 4
0.02

  
 

 = 100 V 

 The total flux linked with the second coil may be given as: 

  ɸ2 = M I1 

 or, d ɸ2 = M d I1 

 The change in flux linked with the individual turn of the secondary coil may be given as: 

  (d ɸ2)per turn = 2

2

d
N
  = 1

2

M d I
N

 = 0.5 ( 4)
200
   = – 0.01 Wb = – 10 mWb  

Problem 6.72: An air cored solenoid of 50 cm length and 2 cm in radius has 500 turns. Another coil of 50 
turns is also wound over the first coil. Determine: i) the mutual inductance of two coils,           
ii) induced emf in the second coil when the current in the primary coil changes from 0 A to 5 A 
in 0.02 sec.     

Solution: l = 50 cm,            r = 2 cm,           N1 = 500 turns,           N2 = 50 Turns,           d I1 = 5 – 0 = 5 A 

 d t = 0.02 sec 

 The mutual inductance of two coils may be given as: 

  M = 0 1 2µ µ r N N A
l

 = 
7 24 π 10 1 500 50 π (0.02 )

0.50

       = 7.896 × 10−5 H = 78.96 µH 

 The induced emf in secondary coil due to change in the current of primary coil may be given as: 

  E2 = – M × 1d I
d t

            (negative sign shows opposition only) 

   = – 78.96 × 10−6 × 5
0.02

 = – 0.01974 V = – 19.74 mV 

Problem 6.73: A solenoid coil has 50 turns per cm along its length and a cross sectional area of 4 × 10−4 m2. 
Another coil of 200 turns is also wound on the same solenoid. If two coils are electrically 
insulated from each other, determine the coefficient of mutual inductance between the two coils. 
Given that µ0 = 4 π × 10−7 NA−2.     [ISCE 1997-98] 

Solution: n1 = 50 Turns/cm = 5000 Turns/m,           A = 4 × 10−4 m2,            N2 = 200 Turns 

 The mutual inductance of two coils may be given as: 

  M = 0 1 2µ µ r N N A
l

 = µ0 µr n1 N2 A  

   = 4 π × 10−7 × 1 × 5000 × 200 × 4 × 10−4 = 5.027 × 10−4 H = 502.7 µH 

Problem 6.74: A solenoid with a length 50 cm has 20 turns per cm and a cross sectional area of 40 cm2 and is 
completely surrounded by another co-axial solenoid of same length but area of cross section of 
25 cm2 with 25 turns per cm. Determine the mutual inductance of the system.     [NCERT] 
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Solution: l1 = l2 = l = 50 cm,          n1 = 20 Turns/cm = 2000 Turns/m,          A1 = 40 cm2,          A2 = 25 cm2 

 n2 = 25 Turns/cm = 2500 Turns/m 

 The mutual inductance of two coils may be given as: 

  M = 0 1 2 2µ µr N N A
l

 = µ0 µr n1 (n2 × l) A2  

   = 4 π × 10−7 × 1 × 2000 × 2500 × 0.5 × 25 × 10−4 = 7.85 × 10−3 H = 7.85 mH 

Problem 6.75: a)  A toroidal solenoid with an air core has an average radius of 15 cm, area of cross section 
12 cm2 and 1200 turns. Obtain the self inductance of the toroid. Ignore the field variation 
along the cross-section of the toroid. 

 b) A second coil of 300 turns is wound closely on the same toroid. If the current in the primary 
coil is increased from 0 A to 2 A in 0.05 sec, obtain the induced emf in the secondary coil.
      [NCERT] 

Solution: r = 15 cm,         A = 12 cm2,          N1 = 1200 Turns,         N2 = 300 Turns,           d I = 2 – 0 = 2 A 

 d t = 0.05 sec 

 The self inductance of the toroid may be given as: 

  L = 
2

0µ µr N A
l

 = 
2

0µ µ
2 π

r N A
r

 = 
7 2 44π 10 1 (1200) 12 10

2π 0.15

     


 

   = 2.304 × 10−3 H = 2.304 mH 

 The mutual inductance of two coils wound on the same toroid may be given as: 

  M = 0 1 2µ µ r N N A
l

 = 0 1 2µ µ
2 π

r N N A
r

 = 
7 44π 10 1200 300 12 10

2 π 0.15

     


 

   = 5.76 × 10−4 H = 576 µH 

 So, the induced emf in the secondary coil may be given as: 

  E2 = – M × 1d I
d t

            (negative sign shows opposition only) 

   = – 576 × 10−6 × 2
0.05

 = – 0.02304 V = – 23.04 mV 

Problem 6.76: A short solenoid of length 4 cm, radius 2 cm and number of turns 100 lying inside on the axis of 
a long solenoid of length 80 cm and number of turns 1500, as shown in the Fig. 6.38. Determine 
the flux through the long solenoid, if a current of 3 A flows through the short solenoid. Also 
determine the mutual inductance of two solenoids.     [NCERT] 

Solution: l1 = 80 cm,      N1 = 1500 Turns,       l2 = 4 cm,         r2 = 2 cm,        N2 = 100 Turns,         I2 = 3 A 

 Since the smaller solenoid is lying inside the larger solenoid, so the flux produced by one 
solenoid is completely associated with the second solenoid. 

 The magnetic field inside the larger solenoid may be given as: 

  B1 = µ0 µr n1 I1 = 0 1 1

1

µ µr N I
l

  

 The flux linkages of the smaller solenoid may be given as: 

S2

S1

 
Fig. 6.38 
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  λ2 = N2 ɸ2 = N2 B1 A2 = N2 × 0 1 1

1

µ µr N I
l

 × A2 = M21 I1   

 So, the mutual inductance of two solenoids may be given as: 

  M21 = 0 1 2 2

1

µ µr N N A
l

 = 
2

0 1 2 2

1

μ μ (π )r N N r
l

 = 
7 24π 10 1 1500 100 π (0.02)

0.80

       

   = 2.96 × 10−4 H = 296 µH 

 The total flux linkages of the longer solenoid due to current in the smaller solenoid may be 
given as: 

  λ1 = M12 × I2 = M21 × I2 = 296 × 10−6 × 3 = 8.88 × 10−4 Wb = 0.888 mWb 

Problem 6.77: Three inductors are connected as shown in the Fig. 6.39. Determine the equivalent inductance 
of the system across the points A and B.   [Punjab 1992-93] 

Solution: L1 = 0.75 H,            L2 = L3 = 0.5 H 

 The equivalent inductance across the points A and B 
may be given as: 

  LAB = L1 (series) [L2 (parallel) L3] 

   = L1 + 2 3

2 3

L L
L L

 = 0.75 + 0.5 0.5
0.5 0.5




  

   = 1.0 H   

Problem 6.78: A magnetic flux of 5 µWb is linked with a coil, when a current of 1 mA flows through it. 
Determine the self inductance of the coil [Haryana 1999-2000, CBSE 1992-93] 

Solution: ɸ = 5 µWb,            I = 1 mA 

 The expression for the flux linked with a coil may be given as: 

  ɸ = L I 

 So, L = 
I
  = 

6

3
5 10
1 10







 = 5 × 10−3 H = 5 mH  

Problem 6.79: Determine the induced emf in a coil of 10 H inductance in which the current changes from 8 A 
to 3 A in 0.2 sec. 

Solution: L = 10 H,            d I = 3 – 8 = – 5 A,            d t = 0.2 sec 

 The induced emf due to changing current may be given as: 

  E = – L × d I
d t

 = – 10 × 5
0.2

  
 

 = 250 V 

Problem 6.80: A magnetic flux of 0.8 mWb is linked with each turn of a 200 turns coil, when there is an 
electric current of 4 A is flowing through it. Determine the self inductance of the coil. 

Solution: ɸ = 0.8 mWb/turn,            N = 200 Turns,            I = 4 A 

 The expression for the flux linkages of the coil may be given as: 

  λ = N ɸ = L I 

L1 = 0.75 H

L2 = 0.5 H

L3 = 0.5 H

A B

  
Fig. 6.39 
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 or, L = N
I
  = 

3200 0.8 10
4

   = 0.04 H = 40 mH 

Problem 6.81: The self inductance of an inductor (coil) having 100 turns is 20 mH. Determine the magnetic 
flux through the cross section of the coil corresponding to a current of 4 mA. Also, determine 
the total flux linkages of the inductor.  [CBSE 1999-2000] 

Solution: N = 100 Turns,            L = 20 mH,            I = 4 mA 

 The flux linkages of the cross section of the inductor (coil) may be given as: 

  λ = N ɸ = L I 

 or, ɸ = L I
N

 = 
3 320 10 4 10
100

     = 8 × 10−7 Wb 

 Total flux linkages of the coil may be given as: 

  λ = N ɸ = 100 × 8 × 10−7 = 8 × 10−5 Wb    

Problem 6.82: A coil of inductance 0.5 H is connected to a 18 V battery. Determine the rate of growth of 
current. 

Solution: L = 0.5 H,            E = 18 V 

 The emf induced across the inductor will be same as that of the emf of battery during the 
growth/decay of current. The expression for the induced emf across an inductor may be given 
as: 

  E = – L × d I
d t

       (negative sign shows opposition only) 

 So,  d I
d t

 = E
L

 = 18
0.5

 = 36 A/sec 

Problem 6.83: An average emf of 25 V is induced in an inductor when the current in it is changed from 2.5 A in 
one direction to the same value in opposite direction in 0.1 sec. Determine the self inductance of 
the inductor. 

Solution: E = 25 V,            d I = 2.5 – (– 2.5 ) = 5 A,            d t = 0.1 sec 

 The expression for the induced emf across an inductor may be given as: 

  E = – L × d I
d t

       (negative sign shows opposition only) 

 or,  L = 
( / )

E
d I d t

 = 25 0.1
5
  = 0.5 H 

Problem 6.84: A inductor (coil) has a self inductance of 10 mH. Determine the maximum magnitude of the 
induced emf in the inductor, when a current i = 0.1 sin 200t Amp is flowing through it. 

Solution: L = 10 mH,            i = 0.1 sin 200t Amp 

 The expression for the induced emf across an inductor may be given as: 

  e = – L × d I
d t

 = – 10 × 10−3 × d
d t

(0.1 sin 200t)  

   = – 10 × 10−3 × 0.1 × 200 × cos 200t = – 0.2 cos 200t 
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 So, the maximum magnitude of the induced emf, E = 0.2 V 

Problem 6.85: Determine the self inductance of a solenoid of length 40 cm, area of cross section 20 cm2 and 
total number of turns 800. 

Solution: l = 40 cm,            A = 20 cm2,            N = 800 Turns 

 The self inductance of the solenoid may be given as: 

  L = 
2

0µ µr N A
l

 = 
7 2 44 π 10 1 (800) 20 10

0.40

       = 4.02 × 10−3 H = 4.02 mH 

Problem 6.86: The current in a solenoid of 240 turns having a length of 12 cm and a radius of 2 cm changes at 
the rate of 0.8 Amp/sec. Determine the induced emf in the solenoid. 

Solution: N = 240 Turns,            l = 12 cm,            r = 2 cm,            d I
d t

 = 0.8 A/sec 

 The induced emf across the solenoid may be given as: 

  E = – L × d I
d t

       (negative sign shows opposition only) 

   = – 
2

0µ µr N A d I
l d t

  = – 
7 2 24 π 10 1 (240) π (0.02)

0.12

      × 0.8 

   = – 6.06 × 10−4 V 

Problem 6.87: Determine the mutual inductance between two coils when a current of 2 A changes to 6 A within 
2 sec and induces an emf of 20 mV in the secondary coil.  [Punjab 1998-99] 

Solution: d I = (6 – 2) = 4 A,            t = 2 sec,            E = 20 mV 

 The expression for the induced emf in secondary coil due to change of current in primary coil 
may be given as: 

  E = – M × d I
d t

       (negative sign shows opposition only) 

 or, M = 
( / )

E
d I d t

 = 
320 10 2

4

   = 0.01 H = 10 mH  

Problem 6.88: The mutual induction between two coils is 2.5 H. If the current in one coil is changed with a 
rate of 2 Amp/sec, determine the induced emf in another coil. 

Solution: M = 2.5 H,            d I
d t

 = 2 A/sec 

 The induced emf in secondary coil due to change of current in primary coil may be given as: 

  E = – M × d I
d t

       (negative sign shows opposition only) 

   = – 2.5 × 2 = – 5 V 

Problem 6.89: In the spark coil of a car, an emf of 40 kV is induced in the secondary when the primary current 
changes from 4 A to 0 A in 10 µsec. Determine the mutual inductance between the primary and 
secondary windings of the spark coil. 

Solution: E = 40 kV,            d I = (0 – 4) = – 4 A,            d t = 10 µsec 
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 The expression for the induced emf in secondary coil due to change of current in primary coil 

may be given as: 

  E = – M × d I
d t

       (negative sign shows opposition only) 

 or, M = 
( / )

E
d I d t

 = 
3 640 10 10 10
( 4)

  


 = 0.1 H = 100 mH  

Problem 6.90: If the current in the primary coil of a pair of coils changes from 10 A to 0 A in 0.1 sec, 
determine: i) the induced emf in the secondary coil, if the mutual inductance between  two coils 
is 2 H, ii) the change of flux per turn in the secondary coil if it has 500 turns. 

Solution: d I = (0 – 10) A = – 10 A,            d t = 0.1 sec,            M = 2 H,            N = 500 Turns 

 The induced emf in secondary coil due to change of current in primary coil may be given as: 

  E = – M × d I
d t

       (negative sign shows opposition only) 

   = – 2 × 10
0.1

  
 

 = 200 V 

 The change in flux linked with the secondary coil may be given as: 

  N × Δ ɸper turn = ɸ2 – ɸ1 = M I2 – M I1 = M × (I2 – I1)  

      Δ ɸper turn = M d I
N
  = 2 ( 10)

500
   = – 0.04 Wb/turn = – 40 mWb/turn 

Problem 6.91: A conducting wire of 100 turns is wound over 1 cm as a secondary coil, near the center of a 
solenoid of 100 cm length and 2 cm radius having 1000 turns. Determine the mutual inductance 
between two coils. 

Solution: N2 = 100 Turns,            l2 = 1 cm,            l1 = 100 cm,            r = 2 cm,            N1 = 1000 Turns 

 The mutual inductance between the two coils may be given as: 

  M = 0 1 2 2

1

µ µr N N A
l

 = 
7 2

2
4 π 10 1 1000 100 π×(0.02)

100 10




    


  

   = 0.1579 × 10−3 H = 0.1579 mH = 157.9 µH 

Problem 6.92: A solenoid has 2000 turns wound over a length of 0.3 m. The cross sectional area of the 
solenoid is 1.2 × 10−3 m2. A secondary coil of 300 turns is also wound closely around its central 
section. If a current of 2 A is reversed in 0.25 sec, determine the induced emf in secondary coil. 

Solution: N1 = 2000 Turns,            l1 = 0.3 m,            A = 1.2 × 10−3 m2,            N2 = 300 Turns,             

 d I = 2 – (– 2) = 4 A,      d t = 0.25 sec 

 The mutual inductance between the two coils may be given as: 

  M = 0 1 2 2

1

µ µr N N A
l

 = 
7 34 π 10 1 2000 300 1.2 10

0.3

         

   = 3.016 × 10−3 H = 3.016 mH 

 The induced emf in secondary coil due to change of current in primary coil may be given as: 
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  E = – M × d I
d t

       (negative sign shows opposition only) 

 or, E = – 3.016 × 10−3 × 4
0.25

 
 
 

 = – 0.04826 V = 48.26 mV 

Problem 6.93: Determine the mutual inductance between two coils, if a current of 10 A in the primary coil 
changes the flux by 5 mWb per turn in the secondary coil of 200 turns. Also, determine the 
induced emf across the ends of the secondary coil in 0.5 sec. 

Solution: I1 = 10 A,            Δ ɸper turn = 5 mWb/turn,            N2 = 200 Turns,            d t = 0.5 sec 

 The flux linkages of two mutually coupled coils may be given as: 

  λ = N2 Δ ɸper turn = M I1  

 or, M = 2

1

per turnN
I


 = 

3200 5 10
10

   = 0.1 H = 100 mH 

 The induced emf in secondary coil due to change of current in primary coil may be given as: 

  E = – M × 1d I
d t

       (negative sign shows opposition only) 

   = – 0.1 × 10
0.5

 
 
 

 = – 2 V 

SHORT ANSWER TYPE QUESTIONS FOR EXERCISE 
1. Define: i) electromagnetic induction, ii) Fraday’s laws of electromagnetic induction, iii) dynamically 

induced emf, iv) statically induced emf. 

2. Define: i) Fleming’s left hand rule, ii) Fleming’s right hand rule, iii) Right hand thumb rule. Also, state 
which Fleming’s law is for generating action and which one is for motoring action?  

3. Derive the expression for induced emf in a conductor from Lorentz force and energy considerations.  

4. Show one complete cycle of alternating emf, w.r.t. the angle of rotating coil, induced in the rotating coil 
inside a magnetic field with the help of suitable diagrams.  

5. Explain eddy currents and the location and pattern of induced eddy currents. Also give the beneficial 
aspects and applications of eddy currents and the method to reduce the eddy current losses. How the eddy 
currents are related to the frequency of the magnetic field / supply?  

6. Define self induction in a coil and name the induced emf in the coil during self induction. Also give the 
phenomenon associated with the self inductance of an electrical circuit. Determine the coefficient of self 
inductance for a coil.  

7. Define mutual induction between two coils. Determine the coefficient of 
mutual inductance and coefficient of coupling between two coils. Name at least 
one electrical machine, which works on the principal of mutual induction.  

8. Predict the direction of induced currents in the loops A and B in the same plane, 
where the current I in the wire is increasing steadily, shown in the Fig. 6.40 (a).  

9. Predict the direction of induced currents in the loops A and B in 
the same plane, where the current I in the wire is decreasing 
steadily, shown in the Fig. 6.40 (a).  

I

A

B

(a)

I

v

(b)  
Fig. 6.40 

A1

P Q

A2

R SN S

 
Fig. 6.41 
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10. Predict the direction of induced current in the metal ring when the ring is moved towards the straight 

current (I) carrying conductor with a constant speed v, as shown in the Fig. 6.40 (b).  

11. A bar magnet is moved in the direction indicated by the arrow, in the Fig. 6.41, 
between two coils PQ and RS. Predict the directions of induced current in each coil.  

12. The closed loop (PQRS) of a conducting wire is moved into a uniform magnetic 
field at right angles to the plane of the paper, as shown in the Fig. 6.42. Predict the 
direction of the induced current in the loop (PQRS).  

13. Define and explain the term wattles current with the help of a neat phasor 
diagram.  

14. Two bar magnet are quickly moved towards a metallic loop connected 
across a capacitor ‘C’, as shown in the Fig. 6.43. Predict the polarity of 
emf across the capacitor due to induced current.  
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VERY SHORT ANSWER TYPE QUESTIONS 

1. Predict the direction of induced currents in the loops A and B in the same 
plane, where the current I in the wire is increasing steadily, as shown in the 
Fig. 6.40 (a). [CBSE, D 2012] 

2. Predict the direction of induced currents in the loops A and B in the same 
plane, where the current I in the wire is decreasing steadily, as shown in the 
Fig. 6.40 (a).  [CBSE, D 2012] 

3. Predict the direction of induced current in the metal ring when 
the ring is moved towards the straight current (I) carrying 
conductor with a constant speed v, as shown in the Fig. 6.40 
(b).  [CBSE, D 2012] 

4. A bar magnet is moved in the direction indicated by the arrow, 
in the Fig. 6.41, between two coils PQ and RS. Predict the 
directions of induced current in each coil.  [CBSE, AI 2012] 

5. The closed loop (PQRS) of a conducting wire is moved into a uniform 
magnetic field at right angles to the plane of the paper, as shown in the Fig. 
6.42. Predict the direction of the induced current in the loop (PQRS).  
 [CBSE, F 2012] 

6. Define and explain the term wattles current with the help of a neat phasor 
diagram. [CBSE, D 2011] 

7. Two bar magnet are quickly moved towards a metallic loop 
connected across a capacitor ‘C’, as shown in the Fig.6.43. Predict 
the polarity of emf across the capacitor due to induced current. 
 [CBSE, AI 2011] 

8. Two bar magnet are quickly moved towards a metallic loop 
connected across a capacitor ‘C’, as shown in the Fig.6.45. Predict 
the polarity of emf across the capacitor due to induced current.  [CBSE, AI 2011] 
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